research

Integrating Dynamics and Wear Modelling to Predict Railway Wheel Profile Evolution

Abstract

The aim of the work described was to predict wheel profile evolution by integrating multi-body dynamics simulations of a wheelset with a wear model. The wear modelling approach is based on a wear index commonly used in rail wear predictions. This assumes wear is proportional to Tγ, where T is tractive force and γ is slip at the wheel/rail interface. Twin disc testing of rail and wheel materials was carried out to generate wear coefficients for use in the model. The modelling code is interfaced with ADAMS/Rail, which produces multi-body dynamics simulations of a railway wheelset and contact conditions at the wheel/rail interface. Simplified theory of rolling contact is used to discretise the contact patches produced by ADAMS/Rail and calculate traction and slip within each. The wear model combines the simplified theory of rolling contact, ADAMS/Rail output and the wear coefficients to predict the wear and hence the change of wheel profile for given track layouts

    Similar works