77 research outputs found

    Design principles for riboswitch function

    Get PDF
    Scientific and technological advances that enable the tuning of integrated regulatory components to match network and system requirements are critical to reliably control the function of biological systems. RNA provides a promising building block for the construction of tunable regulatory components based on its rich regulatory capacity and our current understanding of the sequence–function relationship. One prominent example of RNA-based regulatory components is riboswitches, genetic elements that mediate ligand control of gene expression through diverse regulatory mechanisms. While characterization of natural and synthetic riboswitches has revealed that riboswitch function can be modulated through sequence alteration, no quantitative frameworks exist to investigate or guide riboswitch tuning. Here, we combined mathematical modeling and experimental approaches to investigate the relationship between riboswitch function and performance. Model results demonstrated that the competition between reversible and irreversible rate constants dictates performance for different regulatory mechanisms. We also found that practical system restrictions, such as an upper limit on ligand concentration, can significantly alter the requirements for riboswitch performance, necessitating alternative tuning strategies. Previous experimental data for natural and synthetic riboswitches as well as experiments conducted in this work support model predictions. From our results, we developed a set of general design principles for synthetic riboswitches. Our results also provide a foundation from which to investigate how natural riboswitches are tuned to meet systems-level regulatory demands

    Is Thermosensing Property of RNA Thermometers Unique?

    Get PDF
    A large number of studies have been dedicated to identify the structural and sequence based features of RNA thermometers, mRNAs that regulate their translation initiation rate with temperature. It has been shown that the melting of the ribosome-binding site (RBS) plays a prominent role in this thermosensing process. However, little is known as to how widespread this melting phenomenon is as earlier studies on the subject have worked with a small sample of known RNA thermometers. We have developed a novel method of studying the melting of RNAs with temperature by computationally sampling the distribution of the RNA structures at various temperatures using the RNA folding software Vienna. In this study, we compared the thermosensing property of 100 randomly selected mRNAs and three well known thermometers - rpoH, ibpA and agsA sequences from E. coli. We also compared the rpoH sequences from 81 mesophilic proteobacteria. Although both rpoH and ibpA show a higher rate of melting at their RBS compared with the mean of non-thermometers, contrary to our expectations these higher rates are not significant. Surprisingly, we also do not find any significant differences between rpoH thermometers from other -proteobacteria and E. coli non-thermometers

    Transient Phenomena in Gene Expression after Induction of Transcription

    Get PDF
    When transcription of a gene is induced by a stimulus, the number of its mRNA molecules changes with time. Here we discuss how this time evolution depends on the shape of the mRNA lifetime distribution. Analysis of the statistical properties of this change reveals transient effects on polysomes, ribosomal profiles, and rate of protein synthesis. Our studies reveal that transient phenomena in gene expression strongly depend on the specific form of the mRNA lifetime distribution

    Dynamic probe selection for studying microbial transcriptome with high-density genomic tiling microarrays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current commercial high-density oligonucleotide microarrays can hold millions of probe spots on a single microscopic glass slide and are ideal for studying the transcriptome of microbial genomes using a tiling probe design. This paper describes a comprehensive computational pipeline implemented specifically for designing tiling probe sets to study microbial transcriptome profiles.</p> <p>Results</p> <p>The pipeline identifies every possible probe sequence from both forward and reverse-complement strands of all DNA sequences in the target genome including circular or linear chromosomes and plasmids. Final probe sequence lengths are adjusted based on the maximal oligonucleotide synthesis cycles and best isothermality allowed. Optimal probes are then selected in two stages - sequential and gap-filling. In the sequential stage, probes are selected from sequence windows tiled alongside the genome. In the gap-filling stage, additional probes are selected from the largest gaps between adjacent probes that have already been selected, until a predefined number of probes is reached. Selection of the highest quality probe within each window and gap is based on five criteria: sequence uniqueness, probe self-annealing, melting temperature, oligonucleotide length, and probe position.</p> <p>Conclusions</p> <p>The probe selection pipeline evaluates global and local probe sequence properties and selects a set of probes dynamically and evenly distributed along the target genome. Unique to other similar methods, an exact number of non-redundant probes can be designed to utilize all the available probe spots on any chosen microarray platform. The pipeline can be applied to microbial genomes when designing high-density tiling arrays for comparative genomics, ChIP chip, gene expression and comprehensive transcriptome studies.</p

    Modular Composition of Gene Transcription Networks

    Get PDF
    Predicting the dynamic behavior of a large network from that of the composing modules is a central problem in systems and synthetic biology. Yet, this predictive ability is still largely missing because modules display context-dependent behavior. One cause of context-dependence is retroactivity, a phenomenon similar to loading that influences in non-trivial ways the dynamic performance of a module upon connection to other modules. Here, we establish an analysis framework for gene transcription networks that explicitly accounts for retroactivity. Specifically, a module's key properties are encoded by three retroactivity matrices: internal, scaling, and mixing retroactivity. All of them have a physical interpretation and can be computed from macroscopic parameters (dissociation constants and promoter concentrations) and from the modules' topology. The internal retroactivity quantifies the effect of intramodular connections on an isolated module's dynamics. The scaling and mixing retroactivity establish how intermodular connections change the dynamics of connected modules. Based on these matrices and on the dynamics of modules in isolation, we can accurately predict how loading will affect the behavior of an arbitrary interconnection of modules. We illustrate implications of internal, scaling, and mixing retroactivity on the performance of recurrent network motifs, including negative autoregulation, combinatorial regulation, two-gene clocks, the toggle switch, and the single-input motif. We further provide a quantitative metric that determines how robust the dynamic behavior of a module is to interconnection with other modules. This metric can be employed both to evaluate the extent of modularity of natural networks and to establish concrete design guidelines to minimize retroactivity between modules in synthetic systems.United States. Air Force Office of Scientific Research (FA9550-12-1-0129

    Wnt-reporter expression pattern in the mouse intestine during homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The canonical Wnt signaling pathway is a known regulator of cell proliferation during development and maintenance of the intestinal epithelium. Perturbations in this pathway lead to aberrant epithelial proliferation and intestinal cancer. In the mature intestine, proliferation is confined to the relatively quiescent stem cells and the rapidly cycling transient-amplifying cells in the intestinal crypts. Although the Wnt signal is believed to regulate all proliferating intestinal cells, surprisingly, this has not been thoroughly demonstrated. This important determination has implications on intestinal function, especially during epithelial expansion and regeneration, and warrants an extensive characterization of Wnt-activated cells.</p> <p>Methods</p> <p>To identify intestinal epithelial cells that actively receive a Wnt signal, we analyzed intestinal Wnt-reporter expression patterns in two different mouse lines using immunohistochemistry, enzymatic activity, <it>in situ </it>hybridization and qRT-PCR, then corroborated results with reporter-independent analyses. Wnt-receiving cells were further characterized for co-expression of proliferation markers, putative stem cell markers and cellular differentiation markers using an immunohistochemical approach. Finally, to demonstrate that Wnt-reporter mice have utility in detecting perturbations in intestinal Wnt signaling, the reporter response to gamma-irradiation was examined.</p> <p>Results</p> <p>Wnt-activated cells were primarily restricted to the base of the small intestinal and colonic crypts, and were highest in numbers in the proximal small intestine, decreasing in frequency in a gradient toward the large intestine. Interestingly, the majority of the Wnt-reporter-expressing cells did not overlap with the transient-amplifying cell population. Further, while Wnt-activated cells expressed the putative stem cell marker Musashi-1, they did not co-express DCAMKL-1 or cell differentiation markers. Finally, gamma-irradiation stimulated an increase in Wnt-activated intestinal crypt cells.</p> <p>Conclusion</p> <p>We show, for the first time, detailed characterization of the intestine from Wnt-reporter mice. Further, our data show that the majority of Wnt-receiving cells reside in the stem cell niche of the crypt base and do not extend into the proliferative transient-amplifying cell population. We also show that the Wnt-reporter mice can be used to detect changes in intestinal epithelial Wnt signaling upon physiologic injury. Our findings have an important impact on understanding the regulation of the intestinal stem cell hierarchy during homeostasis and in disease states.</p

    Global Identification and Characterization of Transcriptionally Active Regions in the Rice Genome

    Get PDF
    Genome tiling microarray studies have consistently documented rich transcriptional activity beyond the annotated genes. However, systematic characterization and transcriptional profiling of the putative novel transcripts on the genome scale are still lacking. We report here the identification of 25,352 and 27,744 transcriptionally active regions (TARs) not encoded by annotated exons in the rice (Oryza. sativa) subspecies japonica and indica, respectively. The non-exonic TARs account for approximately two thirds of the total TARs detected by tiling arrays and represent transcripts likely conserved between japonica and indica. Transcription of 21,018 (83%) japonica non-exonic TARs was verified through expression profiling in 10 tissue types using a re-array in which annotated genes and TARs were each represented by five independent probes. Subsequent analyses indicate that about 80% of the japonica TARs that were not assigned to annotated exons can be assigned to various putatively functional or structural elements of the rice genome, including splice variants, uncharacterized portions of incompletely annotated genes, antisense transcripts, duplicated gene fragments, and potential non-coding RNAs. These results provide a systematic characterization of non-exonic transcripts in rice and thus expand the current view of the complexity and dynamics of the rice transcriptome

    A Genome-Wide Approach to Discovery of Small RNAs Involved in Regulation of Virulence in Vibrio cholerae

    Get PDF
    Small RNAs (sRNAs) are becoming increasingly recognized as important regulators in bacteria. To investigate the contribution of sRNA mediated regulation to virulence in Vibrio cholerae, we performed high throughput sequencing of cDNA generated from sRNA transcripts isolated from a strain ectopically expressing ToxT, the major transcriptional regulator within the virulence gene regulon. We compared this data set with ToxT binding sites determined by pulldown and deep sequencing to identify sRNA promoters directly controlled by ToxT. Analysis of the resulting transcripts with ToxT binding sites in cis revealed two sRNAs within the Vibrio Pathogenicity Island. When deletions of these sRNAs were made and the resulting strains were competed against the parental strain in the infant mouse model of V. cholerae colonization, one, TarB, displayed a variable colonization phenotype dependent on its physiological state at the time of inoculation. We identified a target of TarB as the mRNA for the secreted colonization factor, TcpF. We verified negative regulation of TcpF expression by TarB and, using point mutations that disrupted interaction between TarB and tpcF mRNA, showed that loss of this negative regulation was primarily responsible for the colonization phenotype observed in the TarB deletion mutant

    The Challenge of Regulation in a Minimal Photoautotroph: Non-Coding RNAs in Prochlorococcus

    Get PDF
    Prochlorococcus, an extremely small cyanobacterium that is very abundant in the world's oceans, has a very streamlined genome. On average, these cells have about 2,000 genes and very few regulatory proteins. The limited capability of regulation is thought to be a result of selection imposed by a relatively stable environment in combination with a very small genome. Furthermore, only ten non-coding RNAs (ncRNAs), which play crucial regulatory roles in all forms of life, have been described in Prochlorococcus. Most strains also lack the RNA chaperone Hfq, raising the question of how important this mode of regulation is for these cells. To explore this question, we examined the transcription of intergenic regions of Prochlorococcus MED4 cells subjected to a number of different stress conditions: changes in light qualities and quantities, phage infection, or phosphorus starvation. Analysis of Affymetrix microarray expression data from intergenic regions revealed 276 novel transcriptional units. Among these were 12 new ncRNAs, 24 antisense RNAs (asRNAs), as well as 113 short mRNAs. Two additional ncRNAs were identified by homology, and all 14 new ncRNAs were independently verified by Northern hybridization and 5β€²RACE. Unlike its reduced suite of regulatory proteins, the number of ncRNAs relative to genome size in Prochlorococcus is comparable to that found in other bacteria, suggesting that RNA regulators likely play a major role in regulation in this group. Moreover, the ncRNAs are concentrated in previously identified genomic islands, which carry genes of significance to the ecology of this organism, many of which are not of cyanobacterial origin. Expression profiles of some of these ncRNAs suggest involvement in light stress adaptation and/or the response to phage infection consistent with their location in the hypervariable genomic islands

    Cooperative Adaptation to Establishment of a Synthetic Bacterial Mutualism

    Get PDF
    To understand how two organisms that have not previously been in contact can establish mutualism, it is first necessary to examine temporal changes in their phenotypes during the establishment of mutualism. Instead of tracing back the history of known, well-established, natural mutualisms, we experimentally simulated the development of mutualism using two genetically-engineered auxotrophic strains of Escherichia coli, which mimic two organisms that have never met before but later establish mutualism. In the development of this synthetic mutualism, one strain, approximately 10 hours after meeting the partner strain, started oversupplying a metabolite essential for the partner's growth, eventually leading to the successive growth of both strains. This cooperative phenotype adaptively appeared only after encountering the partner strain but before the growth of the strain itself. By transcriptome analysis, we found that the cooperative phenotype of the strain was not accompanied by the local activation of the biosynthesis and transport of the oversupplied metabolite but rather by the global activation of anabolic metabolism. This study demonstrates that an organism has the potential to adapt its phenotype after the first encounter with another organism to establish mutualism before its extinction. As diverse organisms inevitably encounter each other in nature, this potential would play an important role in the establishment of a nascent mutualism in nature
    • …
    corecore