1,451 research outputs found

    The relational ethics of conflict and identity

    Get PDF
    The contemporary psychoanalytically inflected vocabulary of relational ethics centres on acknowledgement, witnessing and responsibility. It has become an important code for efforts to connect with otherness across fractures of hurt, oppression and suffering. One can see the deployment of this vocabulary to challenge patterns of exclusion and dehumanisation in zones of intense political conflict in many situations in which destructive hatred reigns. This paper traces some of the use of and disputes over this ‘acknowledgement-based’ relational ethics in the recent work of Jessica Benjamin and Judith Butler. The field of application is their response to Israel’s treatment of the Palestinians, given their position as Jews. The challenge of the acknowledgement agenda leads back to an issue of general concern – the degree to which relational ethics can prise open apparently closed and defensive psychosocial identities

    Rapid and mobile determination of alcoholic strength in wine, beer and spirits using a flow-through infrared sensor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ever since Gay-Lussac's time, the alcoholic strength by volume (% vol) has been determined by using densimetric measurements. The typical reference procedure involves distillation followed by pycnometry, which is comparably labour-intensive and therefore expensive. At present, infrared (IR) spectroscopy in combination with multivariate regression is widely applied as a screening procedure, which allows one to determine alcoholic strength in less than 2 min without any sample preparation. The disadvantage is the relatively large investment for Fourier transform (FT) IR or near-IR instruments, and the need for matrix-dependent calibration. In this study, we apply a much simpler device consisting of a patented multiple-beam infrared sensor in combination with a flow-through cell for automated alcohol analysis, which is available in a portable version that allows for on-site measurements.</p> <p>Results</p> <p>During method validation, the precision of the infrared sensor was found to be equal to or better than densimetric or FTIR methods. For example, the average repeatability, as determined in 6 different wine samples, was 0.05% vol and the relative standard deviation was below 0.2%. Accuracy was ensured by analyzing 260 different alcoholic beverages in comparison to densimetric or FTIR results. The correlation was linear over the entire range from alcohol-free beers up to high-proof spirits, and the results were in substantial agreement (R = 0.99981, p < 0.0001, RMSE = 0.279% vol). The applicability of the device was further proven for the analysis of wines during fermentation, and for the determination of unrecorded alcohol (i.e. non-commercial or illicit products).</p> <p>Conclusions</p> <p>The flow-through infrared device is much easier to handle than typical reference procedures, while time-consuming sample preparation steps such as distillation are not necessary. Therefore, the alcoholic strength can be economically and quickly controlled (requiring less than 60 s per sample). The device also gives the opportunity for mobile on-site control in the context of labelling control of wine, beer and spirits, the process monitoring of fermentations, or the evaluation of unrecorded alcohols.</p

    Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A

    Get PDF
    © 2013 Matsumiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedA better understanding of the relationships between vaccine, immunogenicity and protection from disease would greatly facilitate vaccine development. Modified vaccinia virus Ankara expressing antigen 85A (MVA85A) is a novel tuberculosis vaccine candidate designed to enhance responses induced by BCG. Antigen-specific interferon-γ (IFN-γ) production is greatly enhanced by MVA85A, however the variability between healthy individuals is extensive. In this study we have sought to characterize the early changes in gene expression in humans following vaccination with MVA85A and relate these to long-term immunogenicity. Two days post-vaccination, MVA85A induces a strong interferon and inflammatory response. Separating volunteers into high and low responders on the basis of T cell responses to 85A peptides measured during the trial, an expansion of circulating CD4+ CD25+ Foxp3+ cells is seen in low but not high responders. Additionally, high levels of Toll-like Receptor (TLR) 1 on day of vaccination are associated with an increased response to antigen 85A. In a classification model, combined expression levels of TLR1, TICAM2 and CD14 on day of vaccination and CTLA4 and IL2Rα two days post-vaccination can classify high and low responders with over 80% accuracy. Furthermore, administering MVA85A in mice with anti-TLR2 antibodies may abrogate high responses, and neutralising antibodies to TLRs 1, 2 or 6 or HMGB1 decrease CXCL2 production during in vitro stimulation with MVA85A. HMGB1 is released into the supernatant following atimulation with MVA85A and we propose this signal may be the trigger activating the TLR pathway. This study suggests an important role for an endogenous ligand in innate sensing of MVA and demonstrates the importance of pattern recognition receptors and regulatory T cell responses in determining the magnitude of the antigen specific immune response to vaccination with MVA85A in humans.This work was funded by the Wellcome Trust. MM has a Wellcome Trust PhD studentship and HM is a Wellcome Trust Senior Fello

    Eosinophil and T Cell Markers Predict Functional Decline in COPD Patients

    Get PDF
    BACKGROUND. The major marker utilized to monitor COPD patients is forced expiratory volume in one second (FEV1). However, asingle measurement of FEV1 cannot reliably predict subsequent decline. Recent studies indicate that T lymphocytes and eosinophils are important determinants of disease stability in COPD. We therefore measured cytokine levels in the lung lavage fluid and plasma of COPD patients in order to determine if the levels of T cell or eosinophil related cytokines were predictive of the future course of the disease. METHODS. Baseline lung lavage and plasma samples were collected from COPD subjects with moderately severe airway obstruction and emphysematous changes on chest CT. The study participants were former smokers who had not had a disease exacerbation within the past six months or used steroids within the past two months. Those subjects who demonstrated stable disease over the following six months (ΔFEV1 % predicted = 4.7 ± 7.2; N = 34) were retrospectively compared with study participants who experienced a rapid decline in lung function (ΔFEV1 % predicted = -16.0 ± 6.0; N = 16) during the same time period and with normal controls (N = 11). Plasma and lung lavage cytokines were measured from clinical samples using the Luminex multiplex kit which enabled the simultaneous measurement of several T cell and eosinophil related cytokines. RESULTS AND DISCUSSION. Stable COPD participants had significantly higher plasma IL-2 levels compared to participants with rapidly progressive COPD (p = 0.04). In contrast, plasma eotaxin-1 levels were significantly lower in stable COPD subjects compared to normal controls (p < 0.03). In addition, lung lavage eotaxin-1 levels were significantly higher in rapidly progressive COPD participants compared to both normal controls (p < 0.02) and stable COPD participants (p < 0.05). CONCLUSION. These findings indicate that IL-2 and eotaxin-1 levels may be important markers of disease stability in advanced emphysema patients. Prospective studies will need to confirm whether measuring IL-2 or eotaxin-1 can identify patients at risk for rapid disease progression.National Heart, Lung, and Blood Institute (NO1-HR-96140, NO1-HR-96141-001, NO1-HR-96144, NO1-HR-96143; NO1-HR-96145; NO1-HR-96142, R01HL086936-03); The Flight Attendant Medical Research Institute; the Jo-Ann F. LeBuhn Center for Chest Diseas

    Geocoding rural addresses in a community contaminated by PFOA: a comparison of methods

    Get PDF
    BACKGROUND: Location is often an important component of exposure assessment, and positional errors in geocoding may result in exposure misclassification. In rural areas, successful geocoding to a street address is limited by rural route boxes. Communities have assigned physical street addresses to rural route boxes as part of E911 readdressing projects for improved emergency response. Our study compared automated and E911 methods for recovering and geocoding valid street addresses and assessed the impact of positional errors on exposure classification. METHODS: The current study is a secondary analysis of existing data that included 135 addresses self-reported by participants of a rural community study who were exposed via public drinking water to perfluorooctanoate (PFOA) released from a DuPont facility in Parkersburg, West Virginia. We converted pre-E911 to post-E911 addresses using two methods: automated ZP4 address-correction software with the U.S. Postal Service LACS database and E911 data provided by Wood County, West Virginia. Addresses were geocoded using TeleAtlas, an online commercial service, and ArcView with StreetMap Premium North America NAVTEQ 2008 enhanced street dataset. We calculated positional errors using GPS measurements collected at each address and assessed exposure based on geocoded location in relation to public water pipes. RESULTS: The county E911 data converted 89% of the eligible addresses compared to 35% by ZP4 LACS. ArcView/NAVTEQ geocoded more addresses (n = 130) and with smaller median distance between geocodes and GPS coordinates (39 meters) than TeleAtlas (n = 85, 188 meters). Without E911 address conversion, 25% of the geocodes would have been more than 1000 meters from the true location. Positional errors in TeleAtlas geocoding resulted in exposure misclassification of seven addresses whereas ArcView/NAVTEQ methods did not misclassify any addresses. CONCLUSIONS: Although the study was limited by small numbers, our results suggest that the use of county E911 data in rural areas increases the rate of successful geocoding. Furthermore, positional accuracy of rural addresses in the study area appears to vary by geocoding method. In a large epidemiological study investigating the health effects of PFOA-contaminated public drinking water, this could potentially result in exposure misclassification if addresses are incorrectly geocoded to a street segment not serviced by public water

    Image informatics strategies for deciphering neuronal network connectivity

    Get PDF
    Brain function relies on an intricate network of highly dynamic neuronal connections that rewires dramatically under the impulse of various external cues and pathological conditions. Among the neuronal structures that show morphologi- cal plasticity are neurites, synapses, dendritic spines and even nuclei. This structural remodelling is directly connected with functional changes such as intercellular com- munication and the associated calcium-bursting behaviour. In vitro cultured neu- ronal networks are valuable models for studying these morpho-functional changes. Owing to the automation and standardisation of both image acquisition and image analysis, it has become possible to extract statistically relevant readout from such networks. Here, we focus on the current state-of-the-art in image informatics that enables quantitative microscopic interrogation of neuronal networks. We describe the major correlates of neuronal connectivity and present workflows for analysing them. Finally, we provide an outlook on the challenges that remain to be addressed, and discuss how imaging algorithms can be extended beyond in vitro imaging studies

    Avian Use of Perennial Biomass Feedstocks as Post-Breeding and Migratory Stopover Habitat

    Get PDF
    Increased production of biomass crops in North America will require new agricultural land, intensify the cultivation of land already under production and introduce new types of biomass crops. Assessing the potential biodiversity impacts of novel agricultural systems is fundamental to the maintenance of biodiversity in agricultural landscapes, yet the consequences of expanded biomass production remain unclear. We evaluate the ability of two candidate second generation biomass feedstocks (switchgrass, Panicum virgatum, and mixed-grass prairie) not currently managed as crops to act as post-breeding and fall migratory stopover habitat for birds. In total, we detected 41 bird species, including grassland specialists and species of state and national conservation concern (e.g. Henslow's Sparrow, Ammodramus henslowii). Avian species richness was generally comparable in switchgrass and prairie and increased with patch size in both patch types. Grassland specialists were less abundant and less likely to occur in patches within highly forested landscapes and were more common and likely to occur in larger patches, indicating that this group is also area-sensitive outside of the breeding season. Variation in the biomass and richness of arthropod food within patches was generally unrelated to richness and abundance metrics. Total bird abundance and that of grassland specialists was higher in patches with greater vegetation structural heterogeneity. Collectively, we find that perennial biomass feedstocks have potential to provide post-breeding and migratory stopover habitat for birds, but that the placement and management of crops will be critical factors in determining their suitability for species of conservation concern. Industrialization of cellulosic bioenergy production that results in reduced crop structural heterogeneity is likely to dramatically reduce the suitability of perennial biomass crops for birds

    Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces

    Get PDF
    The key to obtaining the model-free description of the dynamics of a macromolecule is the optimisation of the model-free and Brownian rotational diffusion parameters using the collected R1, R2 and steady-state NOE relaxation data. The problem of optimising the chi-squared value is often assumed to be trivial, however, the long chain of dependencies required for its calculation complicates the model-free chi-squared space. Convolutions are induced by the Lorentzian form of the spectral density functions, the linear recombinations of certain spectral density values to obtain the relaxation rates, the calculation of the NOE using the ratio of two of these rates, and finally the quadratic form of the chi-squared equation itself. Two major topological features of the model-free space complicate optimisation. The first is a long, shallow valley which commences at infinite correlation times and gradually approaches the minimum. The most severe convolution occurs for motions on two timescales in which the minimum is often located at the end of a long, deep, curved tunnel or multidimensional valley through the space. A large number of optimisation algorithms will be investigated and their performance compared to determine which techniques are suitable for use in model-free analysis. Local optimisation algorithms will be shown to be sufficient for minimisation not only within the model-free space but also for the minimisation of the Brownian rotational diffusion tensor. In addition the performance of the programs Modelfree and Dasha are investigated. A number of model-free optimisation failures were identified: the inability to slide along the limits, the singular matrix failure of the Levenberg–Marquardt minimisation algorithm, the low precision of both programs, and a bug in Modelfree. Significantly, the singular matrix failure of the Levenberg–Marquardt algorithm occurs when internal correlation times are undefined and is greatly amplified in model-free analysis by both the grid search and constraint algorithms. The program relax (http://www.nmr-relax.com) is also presented as a new software package designed for the analysis of macromolecular dynamics through the use of NMR relaxation data and which alleviates all of the problems inherent within model-free analysis

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure
    • …
    corecore