287 research outputs found

    N-acetyltransferase 2 (NAT2) gene polymorphisms in colon and lung cancer patients

    Get PDF
    BACKGROUND: N-acetyltransferase 2 (NAT2) metabolizes arylamines and hydrazines moeities found in many therapeutic drugs, chemicals and carcinogens. The gene encoding NAT2 is polymorphic, thus resulting in rapid or slow acetylator phenotypes. The acetylator status may, therefore, predispose drug-induced toxicities and cancer risks, such as bladder, colon and lung cancer. Indeed, some studies demonstrate a positive association between NAT2 rapid acetylator phenotype and colon cancer, but results are inconsistent. The role of NAT2 acetylation status in lung cancer is likewise unclear, in which both the rapid and slow acetylator genotypes have been associated with disease. METHODS: We investigated three genetic variations, c.481C>T, c.590G>A (p.R197Q) and c.857G>A (p.G286E), of the NAT2 gene, which are known to result in a slow acetylator phenotype. Using validated PCR-RFLP assays, we genotyped 243 healthy unrelated Caucasian control subjects, 92 colon and 67 lung cancer patients for these genetic variations. As there is a recent meta-analysis of NAT2 studies on colon cancer (unlike in lung cancer), we have also undertaken a systematic review of NAT2 studies on lung cancer, and we incorporated our results in a meta-analysis consisting of 16 studies, 3,865 lung cancer patients and 6,077 control subjects. RESULTS: We did not obtain statistically significant differences in NAT2 allele and genotype frequencies in colon cancer patients and control group. Certain genotypes, however, such as [c.590AA+c.857GA] and [c.590GA+c.857GA] were absent among the colon cancer patients. Similarly, allele frequencies in lung cancer patients and controls did not differ significantly. Nevertheless, there was a significant increase of genotypes [c.590GA] and [c.481CT+c.590GA], but absence of homozygous c.590AA and [c.590AA+c.857GA] in the lung cancer group. Meta-analysis of 16 NAT2 studies on lung cancer did not evidence an overall association of the rapid or slow acetylator status to lung cancer. Similarly, the summary odds ratios obtained with stratified meta-analysis based on ethnicity, and smoking status were not significant. CONCLUSION: Our study failed to show an overall association of NAT2 genotypes to either colon or lung cancer risk

    Animated molecular dynamics simulations of hydrated caesium-smectite interlayers

    Get PDF
    Computer animation of center of mass coordinates obtained from 800 ps molecular dynamics simulations of Cs-smectite hydrates (1/3 and 2/3 water monolayers) provided information concerning the structure and dynamics of the interlayer region that could not be obtained through traditional simulation analysis methods. Cs(+ )formed inner sphere complexes with the mineral surface, and could be seen to jump from one attracting location near a layer charge site to the next, while water molecules were observed to migrate from the hydration shell of one ion to that of another. Neighboring ions maintained a partial hydration shell by sharing water molecules, such that a single water molecule hydrated two ions simultaneously for hundreds of picoseconds. Cs-montmorillonite hydrates featured the largest extent of this sharing interaction, because interlayer ions were able to inhabit positions near surface cavities as well as at their edges, close to oxygen triads. The greater positional freedom of Cs(+ )within the montmorillonite interlayer, a result of structural hydroxyl orientation and low tetrahedral charge, promoted the optimization of distances between cations and water molecules required for water sharing. Preference of Cs(+ )for locations near oxygen triads was observed within interlayer beidellite and hectorite. Water molecules also could be seen to interact directly with the mineral surface, entering its surface cavities to approach attracting charge sites and structural hydroxyls. With increasing water content, water molecules exhibited increased frequency and duration of both cavity habitation and water sharing interactions. Competition between Cs(+ )and water molecules for surface sites was evident. These important cooperative and competitive features of interlayer molecular behavior were uniquely revealed by animation of an otherwise highly complex simulation output

    Microcolony Imaging of Aspergillus fumigatus Treated with Echinocandins Reveals Both Fungistatic and Fungicidal Activities

    Get PDF
    Background: The echinocandins are lipopeptides that can be employed as antifungal drugs that inhibit the synthesis of 1,3b-glucans within the fungal cell wall. Anidulafungin and caspofungin are echinocandins used in the treatment of Candida infections and have activity against other fungi including Aspergillus fumigatus. The echinocandins are generally considered fungistatic against Aspergillus species. Methods: Culture of A. fumigatus from conidia to microcolonies on a support of porous aluminium oxide (PAO), combined with fluorescence microscopy and scanning electron microscopy, was used to investigate the effects of anidulafungin and caspofungin. The PAO was an effective matrix for conidial germination and microcolony growth. Additionally, PAO supports could be moved between agar plates containing different concentrations of echinocandins to change dosage and to investigate the recovery of fungal microcolonies from these drugs. Culture on PAO combined with microscopy and image analysis permits quantitative studies on microcolony growth with the flexibility of adding or removing antifungal agents, dyes, fixatives or osmotic stresses during growth with minimal disturbance of fungal microcolonies. Significance: Anidulafungin and caspofungin reduced but did not halt growth at the microcony level; additionally both drugs killed individual cells, particularly at concentrations around the MIC. Intact but not lysed cells showed rapid recovery when the drugs were removed. The classification of these drugs as either fungistatic or fungicidal is simplistic. Microcolon

    Genetic polymorphisms of N-acetyltransferase 1 and 2 and risk of cigarette smoking-related bladder cancer

    Get PDF
    Aromatic amines from cigarette smoking or occupational exposure, recognized risk factors for bladder cancer, are metabolized by N-acetyltransferases (NAT). This study examined the association of (NAT) 1 and 2 genotypes with the risk of smoking-related bladder cancer. A total of 74 pathologically confirmed bladder cancer patients and 184 controls were serially recruited from the National Taiwan University Hospital. History of cigarette smoking and other risk factors for bladder cancer was obtained through standardized questionnaire interview. Peripheral blood lymphocytes were collected from each subject and genotyped for NAT1 and NAT2 by DNA sequencing and polymerase chain reaction-restriction fragment length polymorphism methods. Allele frequency distributions of NAT1 and NAT2 were similar between cases and controls. There was a significant dose–response relationship between the risk of bladder cancer and the quantity and duration of cigarette smoking. The biological gradients were significant among subjects carrying NAT1*10 allele or NAT2 slow acetylators, but not among NAT2 rapid acetylators without NAT1*10 allele. The results are consistent with the hypothesis that NAT1 and NAT2 might modulate the susceptibility to bladder cancer associated with cigarette smoking. © 1999 Cancer Research Campaig

    Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy

    Get PDF
    [[abstract]]This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)- derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.[[notice]]補正完

    Search for a Technicolor omega_T Particle in Events with a Photon and a b-quark Jet at CDF

    Full text link
    If the Technicolor omega_T particle exists, a likely decay mode is omega_T -> gamma pi_T, followed by pi_T -> bb-bar, yielding the signature gamma bb-bar. We have searched 85 pb^-1 of data collected by the CDF experiment at the Fermilab Tevatron for events with a photon and two jets, where one of the jets must contain a secondary vertex implying the presence of a b quark. We find no excess of events above standard model expectations. We express the result of an exclusion region in the M_omega_T - M_pi_T mass plane.Comment: 14 pages, 2 figures. Available from the CDF server (PS with figs): http://www-cdf.fnal.gov/physics/pub98/cdf4674_omega_t_prl_4.ps FERMILAB-PUB-98/321-

    NET1-mediated RhoA activation facilitates lysophosphatidic acid-induced cell migration and invasion in gastric cancer

    Get PDF
    The most lethal aspects of gastric adenocarcinoma (GA) are its invasive and metastatic properties. This aggressive phenotype remains poorly understood. We have recently identified neuroepithelial cell transforming gene 1 (NET1), a guanine exchange factor (GEF), as a novel GA-associated gene. Neuroepithelial cell transforming gene 1 expression is enhanced in GA and it is of functional importance in cell invasion. In this study, we demonstrate the activity of NET1 in driving cytoskeletal rearrangement, a key pathological mechanism in gastric tumour cell migration and invasion. Neuroepithelial cell transforming gene 1 expression was increased 10-fold in response to treatment with lysophosphatidic acid (LPA), resulting in an increase in active levels of RhoA and a 2-fold increase in cell invasion. Lysophosphatidic acid-induced cell invasion and migration were significantly inhibited using either NET1 siRNA or a RhoA inhibitor (C3 exoenzyme), thus indicating the activity of both NET1 and RhoA in gastric cancer progression. Furthermore, LPA-induced invasion and migration were also significantly reduced in the presence of cytochalasin D, an inhibitor of cytoskeletal rearrangements. Neuroepithelial cell transforming gene 1 knockdown resulted in AGS cell rounding and a loss of actin filament organisation, demonstrating the function of NET1 in actin organisation. These data highlight the importance of NET1 as a driver of tumour cell invasion, an activity mediated by RhoA activation and cytoskeletal reorganisation

    Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and EmissionSpectroscopy Study

    Get PDF
    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements

    Label-free cell separation and sorting in microfluidic systems

    Get PDF
    Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible
    corecore