99 research outputs found

    Leveraging structure determination with fragment screening for infectious disease drug targets: MECP synthase from Burkholderia pseudomallei

    Get PDF
    As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme

    Meta-analysis of variation suggests that embracing variability improves both replicability and generalizability in preclinical research

    Get PDF
    The replicability of research results has been a cause of increasing concern to the scientific community. The long-held belief that experimental standardization begets replicability has also been recently challenged, with the observation that the reduction of variability within studies can lead to idiosyncratic, lab-specific results that cannot be replicated. An alternative approach is to, instead, deliberately introduce heterogeneity, known as "heterogenization" of experimental design. Here, we explore a novel perspective in the heterogenization program in a meta-analysis of variability in observed phenotypic outcomes in both control and experimental animal models of ischemic stroke. First, by quantifying interindividual variability across control groups, we illustrate that the amount of heterogeneity in disease state (infarct volume) differs according to methodological approach, for example, in disease induction methods and disease models. We argue that such methods may improve replicability by creating diverse and representative distribution of baseline disease state in the reference group, against which treatment efficacy is assessed. Second, we illustrate how meta-analysis can be used to simultaneously assess efficacy and stability (i.e., mean effect and among-individual variability). We identify treatments that have efficacy and are generalizable to the population level (i.e., low interindividual variability), as well as those where there is high interindividual variability in response; for these, latter treatments translation to a clinical setting may require nuance. We argue that by embracing rather than seeking to minimize variability in phenotypic outcomes, we can motivate the shift toward heterogenization and improve both the replicability and generalizability of preclinical research

    Some salt with your statin, professor?

    Get PDF
    We know that clinical trials sponsored by the pharmaceutical industry are likely to exaggerate benefit and minimise harms. But do these biases extend to their sponsorship of non-human animal research? Using systematic review and meta-analysis Bero and colleagues show that, in the case of statins, things are a little more complicated. While the conclusions of industry-sponsored studies were indeed more enthusiastic than warranted by their data, the data themselves painted a picture more conservative than was seen in non-industry-sponsored studies. This behaviour is consistent with maximising the return on investment, seeking robust data before embarking on a clinical trial, and, once that investment has been made, making every effort to “prove” that the drug is safe and effective if this is at all credible. The findings suggest that there is something different about industry-sponsored non-human animal research, perhaps reflecting higher standards than is the case elsewhere. Perhaps the academic community can learn something from our colleagues in the commercial sector

    A call for transparent reporting to optimize the predictive value of preclinical research

    Get PDF
    The US National Institute of Neurological Disorders and Stroke convened major stakeholders in June 2012 to discuss how to improve the methodological reporting of animal studies in grant applications and publications. The main workshop recommendation is that at a minimum studies should report on sample-size estimation, whether and how animals were randomized, whether investigators were blind to the treatment, and the handling of data. We recognize that achieving a meaningful improvement in the quality of reporting will require a concerted effort by investigators, reviewers, funding agencies and journal editors. Requiring better reporting of animal studies will raise awareness of the importance of rigorous study design to accelerate scientific progress

    Balancing repair and tolerance of DNA damage caused by alkylating agents

    Get PDF
    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity

    State of the art review: the data revolution in critical care

    Get PDF
    This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2015 and co-published as a series in Critical Care. Other articles in the series can be found online at http://ccforum.com/series/annualupdate2015. Further information about the Annual Update in Intensive Care and Emergency Medicine is available from http://www.springer.com/series/8901

    Metabolic dysregulation in vitamin E and carnitine shuttle energy mechanisms associate with human frailty

    Get PDF
    Global ageing poses a substantial economic burden on health and social care costs. Enabling a greater proportion of older people to stay healthy for longer is key to the future sustainability of health, social and economic policy. Frailty and associated decrease in resilience plays a central role in poor health in later life. In this study, we present a population level assessment of the metabolic phenotype associated with frailty. Analysis of serum from 1191 older individuals (aged between 56 and 84 years old) and subsequent longitudinal validation (on 786 subjects) was carried out using liquid and gas chromatography-mass spectrometry metabolomics and stratified across a frailty index designed to quantitatively summarize vulnerability. Through multivariate regression and network modelling and mROC modeling we identified 12 significant metabolites (including three tocotrienols and six carnitines) that differentiate frail and non-frail phenotypes. Our study provides evidence that the dysregulation of carnitine shuttle and vitamin E pathways play a role in the risk of frailty
    corecore