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REVIEW

State of the art review: the data revolution in
critical care
Marzyeh Ghassemi1, Leo Anthony Celi2* and David J Stone3

Abstract

This article is one of ten reviews selected from the
Annual Update in Intensive Care and Emergency
Medicine 2015 and co-published as a series in Critical
Care. Other articles in the series can be found online
at http://ccforum.com/series/annualupdate2015.
Further information about the Annual Update in
Intensive Care and Emergency Medicine is available
from http://www.springer.com/series/8901.

Introduction
Many recent articles highlight the data revolution in
healthcare, an offshoot of the vast amount of digital
medical information that has now accumulated in elec-
tronic medical records (EMRs), and present it as an op-
portunity to create a ‘learning healthcare system’. The
generally proposed vision is for a population data-driven
knowledge system that generalizes from every patient’s
life, disease and treatment experiences to impute the
best course of action for diagnosis, prognosis and treat-
ment of future patients.
There have also been many articles focusing on the

risk that naïve use of Big Data (or data in general) poses.
As stated by Zak Kohane of Harvard Medical School,
Big Data in healthcare cannot be a simple, blind applica-
tion of black-box techniques: “You really need to know
something about medicine. If statistics lie, then Big Data
can lie in a very, very big way” [1].
This paper will discuss the general issue of data in crit-

ical care with a focus on the Big Data phenomenon that
is sweeping healthcare. With the vast amount of digital
medical information that has accumulated in EMRs, the
challenge is the transformation of the copious data into
usable and useful medical knowledge.

* Correspondence: lceli@bidmc.harvard.edu
2Beth Israel Deaconess Medical Center, Harvard-MIT Division of Health
Science and Technology, Division of Pulmonary, Critical Care and Sleep
Medicine, Cambridge, USA
Full list of author information is available at the end of the article

We are experiencing a rapidly expanding collection of
vast amounts of clinical data from routine practice and
ambulatory monitoring. Clinicians must already make
sense of a diverse variety of data input streams in order
to make clinical decisions. Data from our everyday activ-
ities (financial transactions, cellphone and Internet use,
social media posts), the environment, and even the local
government promise to provide even more clinically
relevant information (Figure 1), but to what end? And
how can increasing amounts of data be incorporated
into a system of already overburdened clinicians?
The bottom line is that pertinent quality data add tre-

mendous value, which accounts for their ‘unreasonable
effectiveness’. There is no way to minimize undesirable
variability in practice without the data to substantiate
the standardization. The volume and variety of increas-
ingly available Big Data can allow us to interrogate clin-
ical practice variation, personalize the risk-benefit score
for every test and intervention, discover new knowledge
to understand disease mechanisms, and optimize pro-
cesses such as medical decision making, triage and re-
source allocation. Clinical data have been notorious for
their variable interoperability and quality, but a holistic
use of the massive data sources available (vital signs,
clinical notes, laboratory results, treatments including
medications and procedures) can lead to new perspec-
tives on challenging problems. While the wetware of the
human mind is a wonderful instrument for this purpose,
we must design better data systems to support and im-
prove those components of this data integration process
that exceed human abilities [2].

Data in critical care
Critical care environments are intense by definition. De-
cisions in the intensive care unit (ICU) are frequently
made in the setting of a high degree of uncertainty, and
clinical staff may have only minutes or even seconds to
make those decisions. The increasing need for intensive
care has spiked the ratio of ICU beds to hospital beds as
the ICU plays an expanding role in acute hospital care
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[3]. But the value of many treatments and interventions
in the ICU is unproven, with many standard treatments
being ineffective, minimally effective, questionably effect-
ive, or even harmful to the patient [4]. In a setting where
the effects of every intervention are subject to patient
and clinical context-specific factors, the ability to use
data for decision support becomes very attractive and
closer to essential as increasing complexity transcends
typical cognitive capabilities.
An example of collected data being used to infer high-

level information is the ICU scoring systems in use
today. ICU scoring systems, such as APACHE (Acute
Physiology and Chronic Health Evaluation), MPM (Mor-
tality Probability Model), and SAPS (Simplified Acute
Physiology Score), are all based on the use of physiologic
and other clinical data for severity adjustment (Table 1).
While these scores are primarily used to assess and com-
pare ICU performance (e. g., by examining the ratio of
actual-to-predicted outcomes) they also have use as
short-hand indicators of patient acuity [5]. But scoring
system value depends not only on the accuracy of the
underlying data, but also on clinical trust in the reliabil-
ity of the data and the predictions based on that data. In
2012, scoring systems were used in only 10% to 15% of

US ICUs, despite demonstrated good discrimination and
calibration [6].
In practice, clinical prediction must be motivated by

the needs of clinical staff, and this must be driven in
large part by perceived utility and an increase in technical
comfort amongst clinicians. Some of the biggest oppor-
tunities for Big Data to make practical gains quickly are fo-
cused on the most expensive parts of current clinical
practice: Reliable, predictive alerting and retrospective
reporting analytics for high-cost patients, readmissions,
triage, clinical decompensation, adverse events, and treat-
ment optimization for diseases affecting multiple organ
systems [7].
ICU physicians have embraced the value of collecting

and storing electronic clinical records, and this has led
to partnerships between industrial and academic entities.
For example, the commercial APACHE Outcomes data-
base has gathered partial physiologic and laboratory mea-
surements from over 1 million patient records across 105
ICUs since 2010 [8]. The Philips eICU archives data from
participating ICUs, and has collected an estimated data-
base of over 1.5 million ICU stays. As an ongoing provider,
the eICU adds more than 400,000 patient records per year
to its stores, and these data are also commercially available

Figure 1 Where Big Data in healthcare come from (figure courtesy of Yuan Lai).
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to selected researchers via the eICU Research Institute [9].
In contrast to these commercial databases, the Multipa-
rameter Intelligent Monitoring in Intensive Care (MIMIC)
database is open and publicly accessible (Figure 2). Over
the past decade, the MIMIC database has collected clinical
data from over 60,000 stays in Beth Israel Deaconess Med-
ical Center ICUs, including clinical notes, physiological
waveforms, laboratory measurements, and nurse-verified
numerical data [10].

Establishing knowledge
Medicine is ultimately based on knowledge, and each of
the many ways to establish knowledge has certain advan-
tages and pitfalls. Here, we focus on the randomized
controlled trial (RCT), observational studies and what

we have termed “dynamic clinical data mining” (DCDM)
(Figure 3).
RCTs are the gold-standard for clinical knowledge dis-

covery. But 65 years after the first RCT was published,
only 10–20% of medical decisions are based on RCT-
supported evidence [11]. When examining the validity of
a variety of medical interventions, about half of systematic
reviews report insufficient evidence to support the inter-
vention in question. Most treatment comparisons of clin-
ical interest have actually never been addressed by an RCT
[12]. The reality is that the exponential combinations of
patients, conditions and treatments cannot be exhaustively
explored by RCTs due to the large cost of adding even
small numbers of patients. Furthermore, the process of
performing RCTs often intentionally or inadvertently

Figure 2 The MIMIC database. SSA: social security administration (figure courtesy of the Laboratory of Computational Physiology, Massachusetts
Institute of Technology).

Table 1 A comparison of intensive care unit (ICU) scoring systems (from [47] with permission)

ICU
scoring
system

Timing of data collected Physiological
values

Other required data Total data
elements
required

Original reported mortality
prediction performance

SAPS III Prior to and within 1 hour
of ICU admission

10 Age, six chronic health variables, ICU admission
diagnosis, ICU admission source, LOS prior to
ICU admission, emergency surgery, infection
on admission, four variables for surgery type

26 AUC = 84.8% (n = 16,784)

APACHE IV First ICU day (16–32 h
depending on time
of admission)

17 Age, six chronic health variables, ICU admission
diagnosis, ICU admission source, LOS prior to
ICU admission, emergency surgery, thrombolytic
therapy, FiO2, mechanical ventilation

32 AUC = 88.0% (n = 52,647)

MPM0-III Prior to and within 1 hour
of ICU admission

3 Age, three chronic health variables, five acute
diagnosis variables, admission type (e. g.,
medical-surgical) and emergency surgery, CPR
within 1 h of ICU admission, mechanical
ventilation, code status

16 AUC = 82.3% (n = 50,307)

SAPS: Simplified Acute Physiology Score; MPM: Mortality Prediction Model; APACHE: Acute Physiology and Chronic Health Evaluation; AUC: area under the curve;
CPR: cardiopulmonary resuscitation; LOS: length of stay.
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excludes groups of patients, such as those with particular
co-morbidities or medications, or of certain ages or ethnic
groups. Thus, when trying to make a real decision under
practice conditions, the RCT conclusions may simply not
be applicable to the patient and situation in hand. This
was the driver for the concept of DCDM in which the user
of an EMR would be automatically presented with prior
interventions and outcomes of similar patients to support
what would otherwise be a completely subjective decision
(see below).
Recent observational studies on the MIMIC ICU data-

base have yielded many interesting findings. These in-
clude the heterogeneity of treatment effect of red blood
cell (RBC) transfusion [13], the impact of pre-admission
selective serotonin reuptake inhibitors on mortality in
the ICU [14], the interplay between clinical notes and
structured data on mortality prediction [15], optimization
of heparin dosing to minimize the probability of over- and
under-anticoagulation [16], long-term outcomes of minor
troponin elevations in the ICU [17] and the association
between serum magnesium and blood pressure in the crit-
ically ill [18], to name a few. But these observations may
be specific to the Beth Israel Deaconess Medical Center
and need to be validated using databases from other
institutions.
Others have examined institution-specific databases,

and these studies have yielded findings that have been
translated into practice: A recent study at Seattle Chil-
dren’s compared a wide range of performance metrics

and translated results into prioritized departmental and
enterprise-wide improvements [19].
Celi, Zimolzak and Stone described an operational vi-

sion for a digitally based, generalized decision support
system that they termed “Dynamic Clinical Data Mining”
[20]. The proposed system aggregates individual patient
electronic health data in the course of care; queries a
universal, de-identified clinical database using modified
search engine technology in real time; identifies prior
cases of sufficient similarity as to be instructive to the
case at hand; and populates the individual patient’s EMR
with pertinent decision support material such as sug-
gested interventions and prognosis, based on prior treat-
ments and outcomes (Figure 3).
Some of the most clear-cut arguments for Big Data in

healthcare are in conjunction with the formulation of
fully digitized prevention and pharmacovigilance pro-
cesses [21] (Figure 4). Clinicians of the future will have
to work with user friendly versions of these tools to
make timely and informed decisions about the drugs their
patients are receiving. In a more general sense, clinicians
will have to begin to consider an individual EMR as only
part of a patient’s record with the remainder of the record
consisting of the two-way relationship of the patient’s
EMR with the entire population database. The essential
starting point of the individual patient can be enhanced by
the knowledge present in population-level databases, and
the resulting information combinations and comparisons
used to make informed clinical decisions. In turn, the

Figure 3 Dynamic clinical data mining. EMR: electronic medical record (figure courtesy of Kai-ou Tang and Edward Moseley, from [20] with
permission).
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information accumulated from individuals benefits the
healthcare of the entire population.
Industry is also taking note. National pharmaceutical

benefits manager, Express Scripts, can predict which
patients may fail to take their medication 12 months in
advance, with an accuracy rate of 98% [22]; IBM is
modifying their famed Watson system (in tight collabor-
ation with clinicians) for predicting different types of
cancer [23]. 23andMe’s database has already been used
to find unknown genetic markers for Parkinson’s disease
[24] and myopia [25], and their acquisition of $1.3 mil-
lion in National Institute of Health funding has shown
additional confidence in their goals [26].

The open data movement and medicine
More recently, the open data movement has been
quietly sweeping almost every industry, including the
specialized domain of healthcare. It calls for data shar-
ing, and by its very nature, requires a degree of account-
ability as well as collaboration across disciplines never
seen before. At the forefront of the open data movement
in healthcare is the pharmaceutical industry. In October
2012, GlaxoSmithKline (GSK) announced that it would
make detailed data from its clinical trials widely available
to researchers outside its own walls, stunning the scientific
community [27]. For a company that spends $6.5 billion a
year on research and development, it was a sharp turn
away from a historic system of data secrecy. In May 2013,
the company began posting its own data online. It then in-
vited others to join ClinicalStudyDataRequest.com [28],
where GSK and six other drug makers have already
uploaded data from nearly 900 clinical trials. The follow-
ing month, the medical device company, Medtronic,
teamed up with Yale University and shared its clinical

trials data through the Yale University Open Access Data
(YODA) Project [29].
Other important trends in open data are crowdsourcing,

data marathons and hackathons, which leverage several
newly available phenomena [30]. These include combining
publically available, detailed, and de-identified EMRs with
crowdsourcing techniques and coordinated hackathons to
capture, organize and integrate stakeholder user input
from a necessary variety of input sources (Figure 5). The
traditional approach to knowledge discovery involves pub-
lication in peer-reviewed journals by a very circumscribed
group of contributors. This process excluded a number of
potentially valuable contributors, such as full time clinical
physicians, nurses, medical trainees, and patients, among
others.
Hackathons are large-scale events that contemporan-

eously bring together (physically and/or by teleconferen-
cing) large groups of qualified individuals to collectively
contribute their expertise towards a common problem
set [31]. Crowdsourcing also focuses large groups of
qualified individuals towards a common problem, but al-
lows those individuals to do so asynchronously and in a
mobile manner using phones, tablets, laptops and other
devices to contribute from any location. With such tools,
individual clinical encounters no longer have to be expe-
rienced in a silo-like fashion. The clinical ‘crowd’ can be
leveraged to form a ‘data substrate’ available freely to cli-
nicians and data scientists [4]. This amalgamation of in-
dividual knowledge should allow each clinician to
address gaps in their knowledge, with the confidence
that their decisions are supported by evidence in clinical
practice.
In January 2014, the inaugural Critical Data Marathon

and Conference was held at the Massachusetts Institute

Figure 4 Clinical care optimization: a Big Data model for efficient targeting of tests and treatments and vigilance for adverse events
(figure courtesy of Kai-ou Tang and Edward Moseley, from [21] with permission).
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of Technology [30]. In the data marathon, physicians,
nurses and pharmacists were paired with data scientists
and engineers, and encouraged to investigate a variety of
clinical questions that arise in the ICU. Over a 2-day
period, more than 150 attendees began to answer ques-
tions, such as whether acetaminophen should be used to
control fever in critically ill patients, and what the opti-
mal blood pressure goal should be among patients with
severe infection. This event fostered collaboration between
clinicians and data scientists that will support ongoing re-
search in the ICU setting. The associated Critical Data
Conference addressed growing concerns that Big Data will
only augment the problem of unreliable research. Thought
leaders from academia, government and industry across
disciplines including clinical medicine, computer science,
public health, informatics, biomedical research, health
technology, statistics and epidemiology gathered and dis-
cussed the pitfalls and challenges of Big Data in health-
care. The consensus seemed to be that success will require
systematized and fully transparent data interrogation,
where data and methods are freely shared among different
groups of investigators addressing the same or similar
questions [30]. The added accuracy of the scientific find-
ings is only one of the benefits of the systematization of
the open data movement. Another will be the opportunity
afforded to individuals of every educational level and area
of expertise to contribute to science.
From a broader analysis of Big Data, we can try to

understand larger patterns by comparing the strength of

many signals in large populations. Larger data sets must
also herald the advance of shared data sets. There is a
critical need for collaborative research amongst many
groups that explore similar questions. The association
between data sharing and increased citation rate [32],
and an increasing commitment by companies, funding
agencies and investigators to more widely share clinical
research data [33] point to the feasibility of this move.
The prospect of using Big Data in an open environment
may sound overwhelming, but there have been key steps
to encourage this cultural transformation. For example,
the Centers for Medicare and Medicaid Services (CMS)
have begun to share data with providers and states [34].
As the largest single payer for health care in the United
States, CMS has used its vast store of data to track hos-
pital readmission rates in the Medicare program (im-
portantly finding a rapid decline in readmission rates in
2012 and 2013), and combat Medicare fraud (in its first
year the system stopped, prevented, or identified an esti-
mated $115 million in improper payments).
As large amounts of shared data become available

from different geographic and academic sources, there
will be the additional benefit from the collection of data
from sources with different viewpoints and biases. While
individual researchers may not be aware of their own
biases or assumptions that may impact reported results,
shared exploration of Big Data provides us with an in-
herent sanity check that has been sorely lacking in many
fields.

Figure 5 Beyond open Big Data: addressing unreliable research (figure courtesy of Kai-ou Tang).
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Big data per se
In a recent analysis of data-driven healthcare by the
MIT Technology review, the authors noted that “medi-
cine has entered its data age” [1]. Driven by the promise
of an estimated $300 to $450 billion a year [35], com-
panies of all sizes are beginning to fight in earnest to
capture and tame the data explosion. Key innovations
fall into three major areas: More and more data, espe-
cially resulting from mobile monitoring; better analytics
using new machine learning and other techniques; and
meaningful recommendations that focus on prediction,
description, and prevention of poor health outcomes
(that are finally captured in an easily accessible format).
The mass of new data rests primarily in the propri-

etary hands of large entities like insurance companies
and care providers. For example, the genomics company
23andMe is famously creating a huge database of gen-
omic data, moving from over 700,000 records towards
their goal of tens of millions [26]. Some countries with
centralized healthcare systems like Denmark are also be-
ginning to leverage that accessible data [36]. In addition,
smaller companies like WellDoc [37] and Ginger.io [38]
are beginning to focus on rampant cell-phone penetra-
tion to get into the health-data market. Mobile phones
can now seamlessly acquire daily patient metrics on
meals, exercise, call patterns and other behaviors; Well-
Doc uses these data to recommend personalized insulin
doses based on patients’ daily habits, and Ginger.io moni-
tors patients with mental illnesses for the kinds of actions
that might indicate a need for help. Other companies pro-
vide physical attachments to mobile devices that enrich
the possible data types available: CellScope sells an attach-
ment to support remote otoscopy; AliveCor provides elec-
trocardiogram (EKG) signals; Propeller Health attaches to
an inhaler to record pertinent data; and there are a slew of
others for nearly every imaginable data need [39].
But bigger data require better methods, and better ma-

chine learning techniques for clinical data have been a
long time in coming. The most intuitive argument (that
more data from which to learn cannot be worse, so must
be better) is true: There have been empirical demonstra-
tions that predictive models built from sparse, fine-
grained data see marginal gains in predictive performance
even to massive scale [40]. But there is another less intui-
tive argument for bigger data: Certain rare trends or be-
haviors simply may not be observed in sufficient numbers
without employing Big Data. Dubbed the ‘heavy tail’ of
data, these rare behaviors are even more difficult to ob-
serve as we add more features to our datasets. Intuitively,
we can think of datasets as a set of samples out of a larger
space; for example, a circle inscribed within a square gets
most of the area, leaving only the corners out. But as we
move from inscribing a circle within a square, to inscrib-
ing a sphere within a cube, the ratio of space in the

corners increases [41] (Figure 6). Repeat this to a higher
dimension and most of the volume of the cube will be
concentrated in its (many) corners. But it is these rare in-
stances (sometimes appropriately referred to as ‘corner
cases’) of behaviors or patient characteristics that machine
learning cannot reliably analyze with historically available
data sample sizes. The Big Data explosion is finally offer-
ing data at a scale large enough to overcome the risks of
higher-dimensional spaces when working with healthcare
data issues.
Along with Big Data’s promise, there have been warn-

ings of over confidence and disaster, labelled by Lazer
et al. as “Big Data hubris” [42]. The warning parable told
to illustrate this is Google’s “Flu Trends” [43]. In 2008,
Google launched its Flu Trends, which used the search
terms typed into Google to track the progression of in-
fluenza epidemics over time. However, this approach
was subsequently revealed to have suffered from several
known data analysis pitfalls (e. g., overfitting and concept
drift) so that by 2012–2013, the prevalence of flu was
being greatly overestimated. Other oft-cited risks include
misleading conclusions derived from spurious associa-
tions in increasingly detailed data, and biased collection
of data that may make derived hypotheses difficult to
validate or generalize [44].
But avoiding spurious conclusions from data analysis

is not a challenge unique to Big Data. A 2012 Nature re-
view of cancer research found reproducibility of findings
in only 11% of 53 published papers [45]. There is con-
cern that Big Data will only augment this noise, but
using larger datasets actually tends to help with inflated

Figure 6 The data space and corner cases (figure courtesy of
Yuan Lai).
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significance, as the estimated effect sizes tend to be
much smaller [46].
The biased collection of data is a non-trivial question.

If researchers have large amounts of data that severely
oversample certain populations or conditions, their de-
rived hypotheses can be incorrect or at least understand-
ably difficult to validate. The way that current literature
is designed, generated, and published creates sequential
‘statistically significant’ discoveries from restricted data-
sets. It is not uncommon in the scientific literature to
get a different story for a variable’s (vitamin E, omega-3,
coffee) relationship to outcome (mortality, Alzheimer’s,
infant birth-weight) depending on what is adjusted for,
or how a population was selected. There is little mean-
ing to exploring the impact of one variable for one out-
come: it is the big picture that is meaningful.

Conclusion
The benefits of the data explosion far outweigh the risks
for the careful researcher. As target populations subdivide
along combinations of comorbid conditions and countless
genetic polymorphisms, as diagnostic and monitoring de-
vice including wearable sensors become more ubiquitous,
and as therapeutic options expand beyond the evaluation
of individual interventions including drugs and proce-
dures, it is clear that the traditional approach to know-
ledge discovery cannot scale to match the exponential
growth of medical complexity.
Rather than taking turns hyping and disparaging Big

Data, we need organizations and researchers to create
methods and processes that address some of our most
pressing concerns, e. g., who is in ‘charge’ of shared data,
who ‘owns’ clinical data, and how do we best combine
heterogeneous and superficially non-interoperable data
sources? We need to use Big Data in a different way
than we have traditionally used data – collaboratively.
By creating a culture of transparency and reproducibility,
we can turn the hype over Big Data into big findings.
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