10 research outputs found

    NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin

    No full text
    NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks

    NEK1 kinase domain structure and its dynamic protein interactome after exposure to Cisplatin

    No full text
    NEK family kinases are serine/threonine kinases that have been functionally implicated in the regulation of the disjunction of the centrosome, the assembly of the mitotic spindle, the function of the primary cilium and the DNA damage response. NEK1 shows pleiotropic functions and has been found to be mutated in cancer cells, ciliopathies such as the polycystic kidney disease, as well as in the genetic diseases short-rib thoracic dysplasia, Mohr-syndrome and amyotrophic lateral sclerosis. NEK1 is essential for the ionizing radiation DNA damage response and priming of the ATR kinase and of Rad54 through phosphorylation. Here we report on the structure of the kinase domain of human NEK1 in its apo- and ATP-mimetic inhibitor bound forms. The inhibitor bound structure may allow the design of NEK specific chemo-sensitizing agents to act in conjunction with chemo- or radiation therapy of cancer cells. Furthermore, we characterized the dynamic protein interactome of NEK1 after DNA damage challenge with cisplatin. Our data suggest that NEK1 and its interaction partners trigger the DNA damage pathways responsible for correcting DNA crosslinks

    Kazal-type serine proteinase inhibitors in the midgut of Phlebotomus papatasi

    Get PDF
    Citation: Sigle, Leah Theresa, and Marcelo Ramalho-Ortigao. 2013. β€œKazal-Type Serine Proteinase Inhibitors in the Midgut of Phlebotomus Papatasi.” MemΓ³rias Do Instituto Oswaldo Cruz 108 (6): 671–78. https://doi.org/10.1590/0074-0276108062013001.Sandflies (Diptera: Psychodidae) are important disease vectors of parasites of the genus Leishmania, as well as bacteria and viruses. Following studies of the midgut transcriptome of Phlebotomus papatasi, the principal vector of Leishmania major, two non-classical Kazal-type serine proteinase inhibitors were identified (PpKzl1 and PpKzl2). Analyses of expression profiles indicated that PpKzl1 and PpKzl2 transcripts are both regulated by blood-feeding in the midgut of P. papatasi and are also expressed in males, larva and pupa. We expressed a recombinant PpKzl2 in a mammalian expression system (CHO-S free style cells) that was applied to in vitro studies to assess serine proteinase inhibition. Recombinant PpKzl2 inhibited Ξ±-chymotrypsin to 9.4% residual activity and also inhibited Ξ±-thrombin and trypsin to 33.5% and 63.9% residual activity, suggesting that native PpKzl2 is an active serine proteinase inhibitor and likely involved in regulating digestive enzymes in the midgut. Early stages of Leishmania are susceptible to killing by digestive proteinases in the sandfly midgut. Thus, characterising serine proteinase inhibitors may provide new targets and strategies to prevent transmission of Leishmania

    An insight into the transcriptome of the digestive tract of the bloodsucking bug, Rhodnius prolixus.

    Get PDF
    The bloodsucking hemipteran Rhodnius prolixus is a vector of Chagas' disease, which affects 7-8 million people today in Latin America. In contrast to other hematophagous insects, the triatomine gut is compartmentalized into three segments that perform different functions during blood digestion. Here we report analysis of transcriptomes for each of the segments using pyrosequencing technology. Comparison of transcript frequency in digestive libraries with a whole-body library was used to evaluate expression levels. All classes of digestive enzymes were highly expressed, with a predominance of cysteine and aspartic proteinases, the latter showing a significant expansion through gene duplication. Although no protein digestion is known to occur in the anterior midgut (AM), protease transcripts were found, suggesting secretion as pro-enzymes, being possibly activated in the posterior midgut (PM). As expected, genes related to cytoskeleton, protein synthesis apparatus, protein traffic, and secretion were abundantly transcribed. Despite the absence of a chitinous peritrophic membrane in hemipterans - which have instead a lipidic perimicrovillar membrane lining over midgut epithelia - several gut-specific peritrophin transcripts were found, suggesting that these proteins perform functions other than being a structural component of the peritrophic membrane. Among immunity-related transcripts, while lysozymes and lectins were the most highly expressed, several genes belonging to the Toll pathway - found at low levels in the gut of most insects - were identified, contrasting with a low abundance of transcripts from IMD and STAT pathways. Analysis of transcripts related to lipid metabolism indicates that lipids play multiple roles, being a major energy source, a substrate for perimicrovillar membrane formation, and a source for hydrocarbons possibly to produce the wax layer of the hindgut. Transcripts related to amino acid metabolism showed an unanticipated priority for degradation of tyrosine, phenylalanine, and tryptophan. Analysis of transcripts related to signaling pathways suggested a role for MAP kinases, GTPases, and LKBP1/AMP kinases related to control of cell shape and polarity, possibly in connection with regulation of cell survival, response of pathogens and nutrients. Together, our findings present a new view of the triatomine digestive apparatus and will help us understand trypanosome interaction and allow insights into hemipteran metabolic adaptations to a blood-based diet.Journal ArticleResearch Support, N.I.H. IntramuralResearch Support, Non-U.S. Gov'tSCOPUS: ar.jSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore