554 research outputs found

    X-CNN: Cross-modal Convolutional Neural Networks for Sparse Datasets

    Full text link
    In this paper we propose cross-modal convolutional neural networks (X-CNNs), a novel biologically inspired type of CNN architectures, treating gradient descent-specialised CNNs as individual units of processing in a larger-scale network topology, while allowing for unconstrained information flow and/or weight sharing between analogous hidden layers of the network---thus generalising the already well-established concept of neural network ensembles (where information typically may flow only between the output layers of the individual networks). The constituent networks are individually designed to learn the output function on their own subset of the input data, after which cross-connections between them are introduced after each pooling operation to periodically allow for information exchange between them. This injection of knowledge into a model (by prior partition of the input data through domain knowledge or unsupervised methods) is expected to yield greatest returns in sparse data environments, which are typically less suitable for training CNNs. For evaluation purposes, we have compared a standard four-layer CNN as well as a sophisticated FitNet4 architecture against their cross-modal variants on the CIFAR-10 and CIFAR-100 datasets with differing percentages of the training data being removed, and find that at lower levels of data availability, the X-CNNs significantly outperform their baselines (typically providing a 2--6% benefit, depending on the dataset size and whether data augmentation is used), while still maintaining an edge on all of the full dataset tests.Comment: To appear in the 7th IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), 8 pages, 6 figures. Minor revisions, in response to reviewers' comment

    Enhancement of shot noise due to the fluctuation of Coulomb interaction

    Get PDF
    We have developed a theoretical formalism to investigate the contribution of fluctuation of Coulomb interaction to the shot noise based on Keldysh non-equilibrium Green's function method. We have applied our theory to study the behavior of dc shot noise of atomic junctions using the method of nonequilibrium Green's function combined with the density functional theory (NEGF-DFT). In particular, for atomic carbon wire consisting 4 carbon atoms in contact with two Al(100) electrodes, first principles calculation within NEGF-DFT formalism shows a negative differential resistance (NDR) region in I-V curve at finite bias due to the effective band bottom of the Al lead. We have calculated the shot noise spectrum using the conventional gauge invariant transport theory with Coulomb interaction considered explicitly on the Hartree level along with exchange and correlation effect. Although the Fano factor is enhanced from 0.6 to 0.8 in the NDR region, the expected super-Poissonian behavior in the NDR regionis not observed. When the fluctuation of Coulomb interaction is included in the shot noise, our numerical results show that the Fano factor is greater than one in the NDR region indicating a super-Poissonian behavior

    The covertisation of norms in contact situations : The influence of the nonnative speaker on native speaker behaviour

    Get PDF
    Recombination events. a) Detailed information of 2087 recombination events detected in TcTS gene family. b) Summary of number and percentage of newly annotated TcTS and previously annotated TcTS participating in recombination events as recombinant product, major donor or minor donor. (XLSX 549 kb

    Bulk Cr tips for scanning tunneling microscopy and spin-polarized scanning tunneling microscopy

    Full text link
    A simple, reliable method for preparation of bulk Cr tips for Scanning Tunneling Microscopy (STM) is proposed and its potentialities in performing high-quality and high-resolution STM and Spin Polarized-STM (SP-STM) are investigated. Cr tips show atomic resolution on ordered surfaces. Contrary to what happens with conventional W tips, rest atoms of the Si(111)-7x7 reconstruction can be routinely observed, probably due to a different electronic structure of the tip apex. SP-STM measurements of the Cr(001) surface showing magnetic contrast are reported. Our results reveal that the peculiar properties of these tips can be suited in a number of STM experimental situations

    Wrapped Magnetized Branes: Two Alternative Descriptions?

    Full text link
    We discuss two inequivalent ways for describing magnetized D-branes wrapped N times on a torus T^2. The first one is based on a non-abelian gauge bundle U(N), while the second one is obtained by means of a Narain T-duality transformation acting on a theory with non-magnetized branes. We construct in both descriptions the boundary state and the open string vertices and show that they give rise to different string amplitudes. In particular, the description based on the gauge bundle has open string vertex operators with momentum dependent Chan-Paton factors.Comment: 60 pages, LaTe

    Symmetry Breaking with the SCAN Density Functional Describes Strong Correlation in the Singlet Carbon Dimer

    Full text link
    The SCAN (strongly constrained and appropriately normed) meta-generalized gradient approximation (meta-GGA), which satisfies all 17 exact constraints that a meta-GGA can satisfy, accurately describes equilibrium bonds that are normally correlated. With symmetry breaking, it also accurately describes some sd equilibrium bonds that are strongly correlated. While sp equilibrium bonds are nearly always normally correlated, the C2 singlet ground state is known to be a rare case of strong correlation in an sp equilibrium bond. Earlier work that calculated atomization energies of the molecular sequence B2, C2, O2, and F2 in the local spin density approximation (LSDA), the Perdew-Burke-Ernzerhof (PBE) GGA, and the SCAN meta-GGA, without symmetry breaking in the molecule, found that only SCAN was accurate enough to reveal an anomalous under-binding for C2. This work shows that spin symmetry breaking in singlet C2, the appearance of net up- and down-spin densities on opposite sides (not ends) of the bond, corrects that under-binding, with a small SCAN atomization-energy error more like that of the other three molecules, suggesting that symmetry-breaking with an advanced density functional might reliably describe strong correlation. This article also discusses some general aspects of symmetry breaking, and the insights into strong correlation that symmetry-breaking can bring.Comment: 10 pages, 3 figures, 1 Tabl

    The holomorphic anomaly for open string moduli

    Get PDF
    We complete the holomorphic anomaly equations for topological strings with their dependence on open moduli. We obtain the complete system by standard path integral arguments generalizing the analysis of BCOV (Commun. Math. Phys. 165 (1994) 311) to strings with boundaries. We study both the anti-holomorphic dependence on open moduli and on closed moduli in presence of Wilson lines. By providing the compactification a' la Deligne-Mumford of the moduli space of Riemann surfaces with boundaries, we show that the open holomorphic anomaly equations are structured on the (real codimension one) boundary components of this space.Comment: 1+14 pages, 6 figures! v2: ref. added v3: section 4 expanded, 1+17 pages, 11 figures!!, to be publ. in JHE

    Electronic structure investigation of CeB6 by means of soft X-ray scattering

    Full text link
    The electronic structure of the heavy fermion compound CeB6 is probed by resonant inelastic soft X-ray scattering using photon energies across the Ce 3d and 4d absorption edges. The hybridization between the localized 4f orbitals and the delocalized valence-band states is studied by identifying the different spectral contributions from inelastic Raman scattering and normal fluorescence. Pronounced energy-loss structures are observed below the elastic peak at both the 3d and 4d thresholds. The origin and character of the inelastic scattering structures are discussed in terms of charge-transfer excitations in connection to the dipole allowed transitions with 4f character. Calculations within the single impurity Anderson model with full multiplet effects are found to yield consistent spectral functions to the experimental data.Comment: 9 pages, 4 figures, 1 table, http://link.aps.org/doi/10.1103/PhysRevB.63.07510
    corecore