220 research outputs found

    Adenosine A1 receptor activation mediates the developmental shift at layer 5 pyramidal cell synapses and is a determinant of mature synaptic strength

    Get PDF
    During the first postnatal month glutamatergic synapses between layer 5 pyramidal cells in the rodent neocortex switch from an immature state exhibiting high probability of neurotransmitter release, large unitary amplitude and synaptic depression to a mature state with decreased probability of release, smaller unitary amplitude and synaptic facilitation. Using paired recordings, we demonstrate that the developmental shift in release probability at synapses between rat somatosensory layer 5 thick-tufted pyramidal cells is due to a higher and more heterogeneous activation of presynaptic adenosine A1 receptors. Immature synapses under control conditions exhibited distributions of CV, failure rate and release probability that were almost coincident with the A1 receptor blocked condition; however, mature synapses under control conditions exhibited much broader distributions that spanned those of both the A1 receptor agonised and antagonised conditions. Immature and mature synapses expressed A1 receptors with no observable difference in functional efficacy and therefore the heterogeneous A1 receptor activation seen in the mature neocortex is due to increased adenosine concentrations that vary between synapses. Given the central role demonstrated for A1 receptor activation in determining synaptic amplitude and the statistics of transmission between mature layer 5 pyramidal cells, the emplacement of adenosine sources and sinks near the synaptic terminal could constitute a novel form of long-term synaptic plasticity

    Caffeine-induced synaptic potentiation in hippocampal CA2 neurons

    Get PDF
    Caffeine enhances cognition, but even high non-physiological doses have modest effects on synapses. A 1 adenosine receptors (A 1 Rs) are antagonized by caffeine and are most highly enriched in hippocampal CA2, which has not been studied in this context. We found that physiological doses of caffeine in vivo or A 1 R antagonists in vitro induced robust, long-lasting potentiation of synaptic transmission in rat CA2 without affecting other regions of the hippocampus

    Coincident Activity of Converging Pathways Enables Simultaneous Long-Term Potentiation and Long-Term Depression in Hippocampal CA1 Network In Vivo

    Get PDF
    Memory is believed to depend on activity-dependent changes in the strength of synapses, e.g. long-term potentiation (LTP) and long-term depression (LTD), which can be determined by the sequence of coincident pre- and postsynaptic activity, respectively. It remains unclear, however, whether and how coincident activity of converging efferent pathways can enable LTP and LTD in the pathways simultaneously. Here, we report that, in pentobarbital-anesthetized rats, stimulation (600 pulses, 5 Hz) to Schaffer preceding to commissural pathway within a 40-ms timing window induced similar magnitudes of LTP in both pathways onto synapses of CA1 neurons, with varied LTP magnitudes after reversal of the stimulation sequence. In contrast, in urethane-anesthetized or freely-moving rats, the stimulation to Schaffer preceding to commissural pathway induced Schaffer LTP and commissural LTD simultaneously within a 40-ms timing window, without affecting synaptic efficacy in the reversed stimulation sequence. Coincident activity of Schaffer pathways confirmed the above findings under pentobarbital and urethane anesthesia. Thus, coincident activity of converging afferent pathways tends to switch the pathways to be LTP only or LTP/LTD depending on the activity states of the hippocampus. This network rule strengthens the view that activity-dependent synaptic plasticity may well contribute to memory process of the hippocampal network with flexibility or stability from one state to another

    Sleep-wake sensitive mechanisms of adenosine release in the basal forebrain of rodents : an in vitro study

    Get PDF
    Adenosine acting in the basal forebrain is a key mediator of sleep homeostasis. Extracellular adenosine concentrations increase during wakefulness, especially during prolonged wakefulness and lead to increased sleep pressure and subsequent rebound sleep. The release of endogenous adenosine during the sleep-wake cycle has mainly been studied in vivo with microdialysis techniques. The biochemical changes that accompany sleep-wake status may be preserved in vitro. We have therefore used adenosine-sensitive biosensors in slices of the basal forebrain (BFB) to study both depolarization-evoked adenosine release and the steady state adenosine tone in rats, mice and hamsters. Adenosine release was evoked by high K+, AMPA, NMDA and mGlu receptor agonists, but not by other transmitters associated with wakefulness such as orexin, histamine or neurotensin. Evoked and basal adenosine release in the BFB in vitro exhibited three key features: the magnitude of each varied systematically with the diurnal time at which the animal was sacrificed; sleep deprivation prior to sacrifice greatly increased both evoked adenosine release and the basal tone; and the enhancement of evoked adenosine release and basal tone resulting from sleep deprivation was reversed by the inducible nitric oxide synthase (iNOS) inhibitor, 1400 W. These data indicate that characteristics of adenosine release recorded in the BFB in vitro reflect those that have been linked in vivo to the homeostatic control of sleep. Our results provide methodologically independent support for a key role for induction of iNOS as a trigger for enhanced adenosine release following sleep deprivation and suggest that this induction may constitute a biochemical memory of this state

    Inhibition of Hippocampal Synaptic Activity by ATP, Hypoxia or Oxygen-Glucose Deprivation Does Not Require CD73

    Get PDF
    Adenosine, through activation of its A1 receptors, has neuroprotective effects during hypoxia and ischemia. Recently, using transgenic mice with neuronal expression of human equilibrative nucleoside transporter 1 (hENT1), we reported that nucleoside transporter-mediated release of adenosine from neurons was not a key mechanism facilitating the actions of adenosine at A1 receptors during hypoxia/ischemia. The present study was performed to test the importance of CD73 (ecto-5′-nucleotidase) for basal and hypoxic/ischemic adenosine production. Hippocampal slice electrophysiology was performed with CD73+/+ and CD73−/− mice. Adenosine and ATP had similar inhibitory effects in both genotypes, with IC50 values of approximately 25 µM. In contrast, ATP was a less potent inhibitor (IC50 = 100 µM) in slices from mice expressing hENT1 in neurons. The inhibitory effects of ATP in CD73+/+ and CD73−/− slices were blocked by the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and were enhanced by the nucleoside transport inhibitor S-(4-nitrobenzyl)-6-thioinosine (NBTI), consistent with effects that are mediated by adenosine after metabolism of ATP. AMP showed a similar inhibitory effect to ATP and adenosine, indicating that the response to ATP was not mediated by P2 receptors. In comparing CD73−/− and CD73+/+ slices, hypoxia and oxygen-glucose deprivation produced similar depression of synaptic transmission in both genotypes. An inhibitor of tissue non-specific alkaline phosphatase (TNAP) was found to attenuate the inhibitory effects of AMP and ATP, increase basal synaptic activity and reduce responses to oxygen-glucose deprivation selectively in slices from CD73−/− mice. These results do not support an important role for CD73 in the formation of adenosine in the CA1 area of the hippocampus during basal, hypoxic or ischemic conditions, but instead point to TNAP as a potential source of extracellular adenosine when CD73 is absent

    Adenosine A1 receptor: Functional receptor-receptor interactions in the brain

    Get PDF
    Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders

    Heterosynaptic plasticity in the neocortex

    Get PDF
    Ongoing learning continuously shapes the distribution of neurons’ synaptic weights in a system with plastic synapses. Plasticity may change the weights of synapses that were active during the induction—homosynaptic changes, but also may change synapses not active during the induction—heterosynaptic changes. Here we will argue, that heterosynaptic and homosynaptic plasticity are complementary processes, and that heterosynaptic plasticity might accompany homosynaptic plasticity induced by typical pairing protocols. Synapses are not uniform in their susceptibility for plastic changes, but have predispositions to undergo potentiation or depression, or not to change. Predisposition is one of the factors determining the direction and magnitude of homo- and heterosynaptic changes. Heterosynaptic changes which take place according to predispositions for plasticity may provide a useful mechanism(s) for homeostasis of neurons’ synaptic weights and extending the lifetime of memory traces during ongoing learning in neuronal networks

    Adenosine induces growth-cone turning of sensory neurons

    Get PDF
    The formation of appropriate connections between neurons and their specific targets is an essential step during development and repair of the nervous system. Growth cones are located at the leading edges of the growing neurites and respond to environmental cues in order to be guided to their final targets. Directional information can be coded by concentration gradients of substrate-bound or diffusible-guidance molecules. Here we show that concentration gradients of adenosine stimulate growth cones of sensory neurons (dorsal root ganglia) from chicken embryos to turn towards the adenosine source. This response is mediated by adenosine receptors. The subsequent signal transduction process involves cAMP. It may be speculated that the in vivo function of this response is concerned with the formation or the repair and regeneration of the peripheral nervous system

    Functional Role of the Polymorphic 647 T/C Variant of ENT1 (SLC29A1) and Its Association with Alcohol Withdrawal Seizures

    Get PDF
    Adenosine is involved in several neurological and behavioral disorders including alcoholism. In cultured cell and animal studies, type 1 equilibrative nucleoside transporter (ENT1, slc29a1), which regulates adenosine levels, is known to regulate ethanol sensitivity and preference. Interestingly, in humans, the ENT1 (SLC29A1) gene contains a non-synonymous single nucleotide polymorphism (647 T/C; rs45573936) that might be involved in the functional change of ENT1. Our functional analysis showed that prolonged ethanol exposure increased adenosine uptake activity of mutant cells (ENT1-216Thr) compared to wild-type (ENT1-216Ile) transfected cells, which might result in reduced extracellular adenosine levels. We found that mice lacking ENT1 displayed increased propensity to ethanol withdrawal seizures compared to wild-type littermates. We further investigated a possible association of the 647C variant with alcoholism and the history of alcohol withdrawal seizures in subjects of European ancestry recruited from two independent sites. Analyses of the combined data set showed an association of the 647C variant and alcohol dependence with withdrawal seizures at the nominally significant level. Together with the functional data, our findings suggest a potential contribution of a genetic variant of ENT1 to the development of alcoholism with increased risk of alcohol withdrawal-induced seizures in humans
    corecore