177 research outputs found

    Long-baseline neutrino oscillation physics potential of the DUNE experiment: DUNE Collaboration

    Get PDF
    The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5σ, for all δCP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3σ (5σ) after an exposure of 5 (10) years, for 50% of all δCP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22θ13 to current reactor experiments

    The Single-Phase ProtoDUNE Technical Design Report

    Get PDF
    ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report

    DUNE:Status and Perspectives

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) provides a rich science program with a focus on neutrino oscillations and other beyond the standard model physics. The high-intensity, wide-band neutrino beam will be produced at the Fermi National Accelerator Laboratory (FNAL) and will be directed to the 40~kt liquid argon far detector at the Sanford Underground Research Facility, 1300~km from FNAL. The primary goals of the experiment are to determine the ordering of neutrino masses and to measure the CP violating phase, δCP\delta_{\textrm{CP}}. The underground location of the large DUNE far detector and its excellent energy and spatial resolution will allow also for non-accelerator physics programs predicted by grand unified theories, such as nucleon decay or nn---nˉ\bar{n} oscillations. Moreover, DUNE will be sensitive to the electron neutrino flux from a core-collapse supernova, providing valuable information on the phenomenon's underlying mechanisms. This ambitious project requires extensive prototyping and a testing program to guarantee that all parts of the technology are fully understood and well tested. Two such prototypes, in both single phase (ProtoDUNE-SP) and dual phase (ProtoDUNE-DP) technologies, are under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018

    Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE) Conceptual Design Report Volume 1:The LBNF and DUNE Projects

    Get PDF
    This document presents the Conceptual Design Report (CDR) put forward by an international neutrino community to pursue the Deep Underground Neutrino Experiment at the Long-Baseline Neutrino Facility (LBNF/DUNE), a groundbreaking science experiment for long-baseline neutrino oscillation studies and for neutrino astrophysics and nucleon decay searches. The DUNE far detector will be a very large modular liquid argon time-projection chamber (LArTPC) located deep underground, coupled to the LBNF multi-megawatt wide-band neutrino beam. DUNE will also have a high-resolution and high-precision near detector

    The focal plane instrumentation for the DUNE mission

    Full text link
    DUNE (Dark Universe Explorer) is a proposed mission to measure parameters of dark energy using weak gravitational lensing The particular challenges of both optical and infrared focal planes and the DUNE baseline solution is discussed. The DUNE visible Focal Plane Array (VFP) consists of 36 large format red-sensitive CCDs, arranged in a 9x4 array together with the associated mechanical support structure and electronics processing chains. Four additional CCDs dedicated to attitude control measurements are located at the edge of the array. All CCDs are 4096 pixel red-enhanced e2v CCD203-82 devices with square 12 μ\mum pixels, operating from 550-920nm. Combining four rows of CCDs provides a total exposure time of 1500s. The VFP will be used in a closed-loop system by the spacecraft, which operates in a drift scan mode, in order to synchronize the scan and readout rates. The Near Infrared (NIR) FPA consists of a 5 x 12 mosaic of 60 Hawaii 2RG detector arrays from Teledyne, NIR bandpass filters for the wavelength bands Y, J, and H, the mechanical support structure, and the detector readout and signal processing electronics. The FPA is operated at a maximum temperature of 140 K for low dark current of 0.02e−-/s. Each sensor chip assembly has 2048 x 2048 square pixels of 18 μ\mum size (0.15 arcsec), sensitive in the 0.8 to 1.7 μ\mum wavelength range. As the spacecraft is scanning the sky, the image motion on the NIR FPA is stabilized by a de-scanning mirror during the integration time of 300 s per detector. The total integration time of 1500 seconds is split among the three NIR wavelengths bands. DUNE has been proposed to ESA's Cosmic Vision program and has been jointly selected with SPACE for an ESA Assessment Phase which has led to the joint Euclid mission concept.Comment: 9 pages; To appear in Proc. of SPIE Astronomical Telescopes and Instrumentation (23 - 28 June 2008, Marseille, France

    Underground physics with DUNE

    Get PDF
    The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches. In this paper we will focus on the underground physics with DUNE

    Summary of the DUNE Mission Concept

    Full text link
    The Dark UNiverse Explorer (DUNE) is a wide-field imaging mission concept whose primary goal is the study of dark energy and dark matter with unprecedented precision. To this end, DUNE is optimised for weak gravitational lensing, and also uses complementary cosmolo gical probes, such as baryonic oscillations, the integrated Sachs-Wolf effect, a nd cluster counts. Immediate additional goals concern the evolution of galaxies, to be studied with groundbreaking statistics, the detailed structure of the Milky Way and nearby galaxies, and the demographics of Earth-mass planets. DUNE is a medium class mission consisting of a 1.2m telescope designed to carry out an all-sky survey in one visible and three NIR bands (1deg2^2 field-of-view) which will form a unique legacy for astronomy. DUNE has been selected jointly with SPACE for an ESA Assessment phase which has led to the Euclid merged mission concept.Comment: 9 pages; To appear in Proc. of SPIE Astronomical Telescopes and Instrumentation (23 - 28 June 2008, Marseille, France

    Supernova neutrino burst detection with the Deep Underground Neutrino Experiment

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA

    Prospects for beyond the standard model physics searches at the deep underground neutrino experiment: DUNE collaboration

    Full text link
    Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UA

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν) for charged-current νe absorption on argon. In the context of a simulated extraction of supernova νe spectral parameters from a toy analysis, we investigate the impact of σ(Eν) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν) must be substantially reduced before the νe flux parameters can be extracted reliably; in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10% bias with DUNE requires σ(Eν) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν). A direct measurement of low-energy νe-argon scattering would be invaluable for improving the theoretical precision to the needed level
    • …
    corecore