6,111 research outputs found
Atrocalopteryx melli orohainani ssp. nov. on the Island of Hainan, China (Zygoptera: Calopterygidae)
The new sp. is described from the mountain core of Hainan, southern China, where it usually occurs at altitudes not lower than 300 m asl. It lives on the same type of small, shaded rivers as the nominate ssp. on the continent, and is distinguished by its larger size, slightly less enfumed wings, and a 2.6% difference in the sequence of the barcoding portion of the mitochodrial DNA-cytochrome c oxidase subunit I gene (COI). Holotype male: Diaoluoshan mountain, 6-VIII-2011; deposited in the Inst. Hydrobiol., Jinan Univ., Guanghou. It is argued that this geographically defined ssp. evolved because of persistent poor gene flow with continental populations, caused by the lowland "panhandle" between Hainan and the continent. This barrier was probably functioning equally well during interglacials (like at present) as during pleniglacials (when Hainan was connected to the mainland), because lack of suitable environments (small sized running waters), and dry and cold conditions continued to limit the contact with A. melli of the mainland
Evidence for dust accumulation just outside the orbit of Venus
To contribute to the knowledge of dynamics of interplanetary dust we are
searching for structures in the spatial distribution of interplanetary dust
near the orbit of Venus. To this end we study the radial gradient of zodiacal
light brightness, as observed by the zodiacal light photometer on board the
Helios space probes on several orbits from 1975 to 1979. The cleanest data
result from Helios B (= Helios 2) launched in January 1976. With respect to the
general increase of zodiacal light brightness towards the Sun, the data show an
excess brightness of a few percent for positions of the Helios space probe just
outside the orbit of Venus. We consider this as evidence for a dust ring
associated with the orbit of Venus, somewhat similar to that found earlier
along the Earth's orbit.Comment: 7 pages, 8 figures, Astronomy&Astrophysics, accepte
Constraints on a strong X-ray flare in the Seyfert galaxy MCG-6-30-15
We discuss implications of a strong flare event observed in the Seyfert
galaxy MCG-6-30-15 assuming that the emission is due to localized magnetic
reconnection. We conduct detailed radiative transfer modeling of the
reprocessed radiation for a primary source that is elevated above the disk. The
model includes relativistic effects and Keplerian motion around the black hole.
We show that for such a model setup the observed time-modulation must be
intrinsic to the primary source. Using a simple analytical model we then
investigate time delays between hard and soft X-rays during the flare. The
model considers an intrinsic delay between primary and reprocessed radiation,
which measures the geometrical distance of the flare source to the reprocessing
sites. The observed time delays are well reproduced if one assumes that the
reprocessing happens in magnetically confined, cold clouds.Comment: 4 pages, 2 figures, proceedings of a talk given at the symposium 238
at the IAU General Assembly 200
The structure and radiation spectra of illuminated accretion discs in AGN. I. Moderate illumination
We present detailed computations of the vertical structure of an accretion
disc illuminated by hard X-ray radiation with the code {\sc titan-noar}
suitable for Compton thick media. The energy generated via accretion is
dissipated partially in the cold disc as well as in the X-ray source. We study
the differences between the case where the X-ray source is in the form of a
lamp post above the accretion disc and the case of a heavy corona. We consider
radiative heating via Comptonization together with heating via photo-absorption
on numerous heavy elements as carbon, oxygen, silicon, iron. The transfer in
lines is precisely calculated. A better description of the heating/cooling
through the inclusion of line transfer, a correct description of the
temperature in the deeper layers, a correct description of the entire disc
vertical structure, as well as the study of the possible coronal pressure
effect, constitute an improvement in comparison to previous works. We show that
exact calculations of hydrostatic equilibrium and determination of the disc
thickness has a crucial impact on the optical depth of the hot illuminated
zone. We assume a moderate illumination where the viscous flux equals the X-ray
radiation flux. A highly ionized skin is created in the lamp post model, with
the outgoing spectrum containing many emission lines and ionization edges in
emission or absorption in the soft X-ray domain, as well as an iron line at
keV consisting of a blend of low ionization line from the deepest
layers and hydrogen and helium like resonance line from the upper layers, and
almost no absorption edge, contrary to the case of a slab of constant density.A
full heavy corona completely suppresses the highly ionized zone on the top of
the accretion disc and in such case the spectrum is featureless.Comment: 16 pages, 20 figures, corrected two sentences, accepted by MNRA
Obscuration model of Variability in AGN
There are strong suggestions that the disk-like accretion flow onto massive
black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due
to the radiation pressure instability. It may form a hot optically thin quasi
spherical (ADAF) flow surrounded by or containing denser clouds due to the
disruption of the disk. Such clouds might be optically thick, with a Thompson
depth of order of 10 or more. Within the frame of this cloud scenario
(Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are
expected and the effect would be seen as a variability. We consider expected
random variability due to statistical dispersion in location of clouds along
the line of sight for a constant covering factor. We discuss a simple
analytical toy model which provides us with the estimates of the mean spectral
properties and variability amplitude of AGN, and we support them with radiative
transfer computations done with the use of TITAN code of Dumont, Abrassart &
Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy
and Astrophysic
Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors
The most recent LHC data have provided a considerable improvement in the
precision with which various Higgs production and decay channels have been
measured. Using all available public results from ATLAS, CMS and the Tevatron,
we derive for each final state the combined confidence level contours for the
signal strengths in the (gluon fusion + ttH associated production) versus
(vector boson fusion + VH associated production) space. These "combined signal
strength ellipses" can be used in a simple, generic way to constrain a very
wide class of New Physics models in which the couplings of the Higgs boson
deviate from the Standard Model prediction. Here, we use them to constrain the
reduced couplings of the Higgs boson to up-quarks, down-quarks/leptons and
vector boson pairs. We also consider New Physics contributions to the
loop-induced gluon-gluon and photon-photon couplings of the Higgs, as well as
invisible/unseen decays. Finally, we apply our fits to some simple models with
an extended Higgs sector, in particular to Two-Higgs-Doublet models of Type I
and Type II, the Inert Doublet model, and the Georgi-Machacek triplet Higgs
model.Comment: 31 pages, 15 figures; v2: fixed important factor of 2 missing in Eq.
(1) (results unchanged), extended discussion in the next-to-last paragraph of
Section 3, some references added; v3: appendices and references added,
matches version accepted by PR
Status of invisible Higgs decays
We analyze the extent to which the LHC and Tevatron results as of the end of
2012 constrain invisible (or undetected) decays of the Higgs boson-like state
at ~ 125 GeV. To this end we perform global fits for several cases: 1) a Higgs
boson with Standard Model (SM) couplings but additional invisible decay modes;
2) SM couplings to fermions and vector bosons, but allowing for additional new
particles modifying the effective Higgs couplings to gluons and photons; 3) no
new particles in the loops but tree-level Higgs couplings to the up-quarks,
down-quarks and vector bosons, relative to the SM, treated as free parameters.
We find that in the three cases invisible decay rates of 23%, 61%, 88%,
respectively, are consistent with current data at 95% confidence level (CL).
Limiting the coupling to vector bosons, CV, to CV < 1 in case 3) reduces the
allowed invisible branching ratio to 56% at 95% CL. Requiring in addition that
the Higgs couplings to quarks have the same sign as in the SM, an invisible
rate of up to 36% is allowed at 95% CL. We also discuss direct probes of
invisible Higgs decays, as well as the interplay with dark matter searches.Comment: 14 pages, 8 figures; v2: extended discussion on ZH associated
production, references added, minor corrections; v4: matches final version
published in Phys. Lett.
- …