There are strong suggestions that the disk-like accretion flow onto massive
black hole in AGN is disrupted in its innermost part (10-100 Rg), possibly due
to the radiation pressure instability. It may form a hot optically thin quasi
spherical (ADAF) flow surrounded by or containing denser clouds due to the
disruption of the disk. Such clouds might be optically thick, with a Thompson
depth of order of 10 or more. Within the frame of this cloud scenario
(Collin-Souffrin et al. 1996, Czerny & Dumont 1998), obscuration events are
expected and the effect would be seen as a variability. We consider expected
random variability due to statistical dispersion in location of clouds along
the line of sight for a constant covering factor. We discuss a simple
analytical toy model which provides us with the estimates of the mean spectral
properties and variability amplitude of AGN, and we support them with radiative
transfer computations done with the use of TITAN code of Dumont, Abrassart &
Collin (1999) and NOAR code of Abrassart (1999).Comment: to appear in Proc. of 5th Compton Symposium on Gamma-Ray Astronomy
and Astrophysic