400 research outputs found

    Monitoring and predicting tropical cyclone movement using geosynchronous satellite remote sensing techniques

    Get PDF
    Data collected on special hurricane days by the VISSR Atmospheric Sounder (VAS) instrument flown on a satellite in 1981 and 1982 were studied for their usefulness in forecasting motion of hurricanes. The retrieved constant pressure heights for the 500-mb surface provided the basis for reasonable forecasts of 24 hour hurricane motion. The conclusions are illustrated with examples from Hurricane Harvey (1981) and Hurricane Irene (1981). Recommendations are made for future use of the VAS type instruments for tropical cyclone forecasting

    Theory of Weak Hypernuclear Decay

    Get PDF
    The weak nonmesonic decay of Lambda-hypernuclei is studied in the context of a one-meson-exchange model. Predictions are made for the decay rate, p/n stimulation ratio and the asymmetry in polarized hypernuclear decay.Comment: Standard 41 page Latex fil

    Using Generative AI to Remove Barriers in Support of Open Content Creation

    Get PDF
    Open content, such as textbook-length open educational resources (OER) or smaller pieces like an assignment, can offer numerous benefits to students by being free, diverse, and effective replacements for traditional textbooks, but there are limited open resources and difficulties creating new open content. This poster explores how generative AI can remove these barriers, enabling instructors to have time and support to create and use open content in their courses. By highlighting use cases, attendees will see how to do this approach in their own classroom, regardless of modality or discipline. Important considerations will be addressed, including usage, sharing, and ethics. This poster presentation was presented at Teaching and Learning with AI Conference 2023

    The 5-Ps of Jumpstarting Open Assessment Creation with Generative AI

    Get PDF
    Generative Artificial Intelligence (AI trained on Large Language Models to generate text) has exploded into the digital learning space. As the need for Open Educational Resources (OER) also continues to grow, generative AI can jumpstart aspects of OER creation. This presentation will consider barriers to OER adoption, including the availability of supplemental teaching resources, and will propose a use case for leveraging AI text-generation to support best practices for creating unique assessment questions. Through the “5-Ps,” – Problem, Past, Present, Possibilities, and Product – we will consider the ways that adopters, adapters, and authors of OER can use generative AI to support access, innovation, and evaluation. We will consider OER adoption through the lenses of textbook affordability and instructional design to propose a framework for using generative-AI so that open education reaches more learners while maintaining the principles of research-backed assessment practices. This is a presentation for the Open Education Conference 2023

    Functional approach to the non-mesonic decay of Lambda-hypernuclei

    Full text link
    We present an evaluation of the non-mesonic decay widths for Lambda-hypernuclei (Lambda N --> NN, Lambda NN --> NNN) within the framework of the polarization propagator method. The full Lambda self-energy is evaluated microscopically in nuclear matter by using the functional approach, which supplies a theoretically well grounded approximation scheme for the classification of the relevant diagrams, according to the prescriptions of the bosonic loop expansion. We employ average Fermi momenta, suitably adapted to different mass number regions (medium-light, medium and heavy hypernuclei). Moreover, we study the dependence of the decay rates on the NN and Lambda-N short range correlations. With a proper choice of the parameters which control these correlations in the new approximation scheme, it is possible to reproduce the experimental decay widths for A > 10 hypernuclei.Comment: 25 pages, 8 figure

    Relativistic Treatment of Hypernuclear Decay

    Get PDF
    We compute for the first time the decay width of lambda-hypernuclei in a relativistic mean-field approximation to the Walecka model. Due to the small mass difference between the lambda-hyperon and its decay products---a nucleon and a pion---the mesonic component of the decay is strongly Pauli blocked in the nuclear medium. Thus, the in-medium decay becomes dominated by the non-mesonic, or two-body, component of the decay. For this mode, the lambda-hyperon decays into a nucleon and a spacelike nuclear excitation. In this work we concentrate exclusively on the pion-like modes. By relying on the analytic structure of the nucleon and pion propagators, we express the non-mesonic component of the decay in terms of the spin-longitudinal response function. This response has been constrained from precise quasielastic (p,n) measurements done at LAMPF. We compute the spin-longitudinal response in a relativistic random-phase-approximation model that reproduces accurately the quasielastic data. By doing so, we obtain hypernuclear decay widths that are considerably smaller---by factors of two or three---relative to existing nonrelativistic calculations.Comment: Revtex: 18 pages and 4 postscript figure

    The nonmesonic weak decay of the hypertriton

    Get PDF
    The nonmesonic decay of the hypertriton is calculated based on a hypertriton wavefunction and 3N scattering states, which are rigorous solutions of 3-body Faddeev equations using realistic NN and hyperon-nucleon interactions. The pion-exchange together with heavier meson exchanges for the ΛN→NN\Lambda N \to N N transition is considered. The total nonmesonic decay rate is found to be 0.5% of the free Λ\Lambda decay rate. Integrated as well as differential decay rates are given. The p- and n- induced decays are discussed thoroughly and it is shown that the corresponding total rates cannot be measured individually.Comment: 27 pages, 20 figures, revtex, submitted to Phys. Rev.

    Photoswitchable architecture transformation of a DNA-hybrid assembly at the microscopic and macroscopic scale

    Get PDF
    Molecular recognition-driven self-assembly employing single-stranded DNA (ssDNA) as a template is a promising approach to access complex architectures from simple building blocks. Oligonucleotide-based nanotechnology and soft-materials benefit from the high information storage density, self-correction, and memory function of DNA. Here we control these beneficial properties with light in a photoresponsive biohybrid hydrogel, adding an extra level of function to the system. An ssDNA template was combined with a complementary photo-responsive unit to reversibly switch between various functional states of the supramolecular assembly using a combination of light and heat. We studied the structural response of the hydrogel at both the microscopic and macroscopic scale using a combination of UV-vis absorption and CD spectroscopy, as well as fluorescence, transmission electron, and atomic force microscopy. The hydrogels grown from these supramolecular self-assembly systems show remarkable shape-memory properties and imprinting shape-behavior while the macroscopic shape of the materials obtained can be further manipulated by irradiation

    Optical Drug Monitoring: Photoacoustic Imaging of Nanosensors to Monitor Therapeutic Lithium in Vivo

    Get PDF
    Personalized medicine could revolutionize how primary care physicians treat chronic disease and how researchers study fundamental biological questions. To realize this goal, we need to develop more robust, modular tools and imaging approaches for in vivo monitoring of analytes. In this report, we demonstrate that synthetic nanosensors can measure physiologic parameters with photoacoustic contrast, and we apply that platform to continuously track lithium levels in vivo. Photoacoustic imaging achieves imaging depths that are unattainable with fluorescence or multiphoton microscopy. We validated the photoacoustic results that illustrate the superior imaging depth and quality of photoacoustic imaging with optical measurements. This powerful combination of techniques will unlock the ability to measure analyte changes in deep tissue and will open up photoacoustic imaging as a diagnostic tool for continuous physiological tracking of a wide range of analytes

    The nucleon-nucleon interaction

    Get PDF
    We review the major progress of the past decade concerning our understanding of the nucleon-nucleon interaction. The focus is on the low-energy region (below pion production threshold), but a brief outlook towards higher energies is also given. The items discussed include charge-dependence, the precise value of the πNN\pi NN coupling constant, phase shift analysis and high-precision NN data and potentials. We also address the issue of a proper theory of nuclear forces. Finally, we summarize the essential open questions that future research should be devoted to.Comment: 42 pages, 12 figures, iopart.cls style; Topical Review prepared for J. Phys. G: Nucl. Part. Phy
    • …
    corecore