53 research outputs found

    Influenza severe cases in hospitals, between 2014 and 2016 in Portugal

    Get PDF
    Rede Portuguesa de LaboratĂłrios para o DiagnĂłstico da GripeBackground: Since 2009, the Portuguese Laboratory Network (PLNID) for Influenza Diagnosis has integrated 15 Laboratories in mainland and Atlantic Islands of Azores and Madeira. This PLNID added an important contribute to the National Influenza Surveillance Program regarding severe and hospitalized influenza cases. The present study aims to describe influenza viruses detected in influenza like illness (ILI) cases: outpatients (Outp), hospitalized (Hosp), and intensive care units (ICU), between 2014 and 2016. Methods: The PLNID performs influenza virus diagnosis by biomolecular methodologies. Weekly reports to the National Influenza Reference Laboratory ILI cases tested for influenza. Reports include data on detecting viruses, hospital assistance, antiviral therapeutics, and information on death outcome. Were reported during two winter seasons 8059 ILI cases,being 3560 cases in 2014/15 (1024 in Outp, 1750 Hosp, and 606 in ICU) and 4499 cases in 2015/2016 (1933 in Outp, 1826 Hosp, and 740 in ICU). Results: The higher percentage of influenza positive cases were detected in Outp in both seasons, 18% during 2014/15 and 20% in 2015/16. In 2014/15,influenza cases were more frequent in individuals older than 65 years old and these required more hospitalizations,even in ICU. In 2015/16,the influenza cases were mainly detected in individuals between 15-64 years old. A higher proportion of influenza positive cases with hospitalization in ICU were observed in adults between 45-64 years old.During the study period,the predominant circulating influenza viruses were different in the two seasons: influenza B and A(H3) co-circulated in 2014/15,and influenza A(H1)pdm09 was predominant during 2015/16. Even when influenza A is notthe dominant virus, A(H3) and A(H1)pdm09 subtypes correlate with higher detection rate in hospitalized cases (Hosp and UCI), with higher frequencies in adults older than 45. Influenza B,detected in higher proportion in outpatients, was frequently relatedwith influenza cases in younger age groups: 0-4 and 5-14 years old. Conclusions: This study highlights the correlation of theinfluenza virus type/subtype that circulates in each season with the possible need for hospitalization and intensive care in special groups of the population. Circulation of influenza A subtypes can cause more frequentdisease in individuals older than 45, with need of hospitalization including intensive care. On the other hand, influenza B is more frequently associated with less severe cases and with infection in children and younger adults. Influenza B circulation might predict lower number of hospitalizations.The identification of influenza type in circulation,byPLNID ineach season, could guide action planning measures in population health care.info:eu-repo/semantics/publishedVersio

    SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal

    Get PDF
    Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration with more than 50 laboratories distributed nationwide. Methods By applying recent phylodynamic models that allow integration of individual-based travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal. Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland), which were consistent with the countries with the highest connectivity with Portugal. Although most introductions were estimated to have occurred during early March 2020, it is likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the first cases were confirmed. Conclusions Here we conclude that the earlier implementation of measures could have minimized the number of introductions and subsequent virus expansion in Portugal. This study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team, IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation (https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing guidance on the implementation of the phylodynamic models; Joshua L. Cherry (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health) for providing guidance with the subsampling strategies; and all authors, originating and submitting laboratories who have contributed genome data on GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions expressed in this article are those of the authors and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. This study is co-funded by Fundação para a CiĂȘncia e Tecnologia and AgĂȘncia de Investigação ClĂ­nica e Inovação BiomĂ©dica (234_596874175) on behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation (POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), and by Fundação para a CiĂȘncia e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio

    MAMMALS IN PORTUGAL : A data set of terrestrial, volant, and marine mammal occurrences in P ortugal

    Get PDF
    Mammals are threatened worldwide, with 26% of all species being includedin the IUCN threatened categories. This overall pattern is primarily associatedwith habitat loss or degradation, and human persecution for terrestrial mam-mals, and pollution, open net fishing, climate change, and prey depletion formarine mammals. Mammals play a key role in maintaining ecosystems func-tionality and resilience, and therefore information on their distribution is cru-cial to delineate and support conservation actions. MAMMALS INPORTUGAL is a publicly available data set compiling unpublishedgeoreferenced occurrence records of 92 terrestrial, volant, and marine mam-mals in mainland Portugal and archipelagos of the Azores and Madeira thatincludes 105,026 data entries between 1873 and 2021 (72% of the data occur-ring in 2000 and 2021). The methods used to collect the data were: live obser-vations/captures (43%), sign surveys (35%), camera trapping (16%),bioacoustics surveys (4%) and radiotracking, and inquiries that represent lessthan 1% of the records. The data set includes 13 types of records: (1) burrowsjsoil moundsjtunnel, (2) capture, (3) colony, (4) dead animaljhairjskullsjjaws, (5) genetic confirmation, (6) inquiries, (7) observation of live animal (8),observation in shelters, (9) photo trappingjvideo, (10) predators dietjpelletsjpine cones/nuts, (11) scatjtrackjditch, (12) telemetry and (13) vocalizationjecholocation. The spatial uncertainty of most records ranges between 0 and100 m (76%). Rodentia (n=31,573) has the highest number of records followedby Chiroptera (n=18,857), Carnivora (n=18,594), Lagomorpha (n=17,496),Cetartiodactyla (n=11,568) and Eulipotyphla (n=7008). The data setincludes records of species classified by the IUCN as threatened(e.g.,Oryctolagus cuniculus[n=12,159],Monachus monachus[n=1,512],andLynx pardinus[n=197]). We believe that this data set may stimulate thepublication of other European countries data sets that would certainly contrib-ute to ecology and conservation-related research, and therefore assisting onthe development of more accurate and tailored conservation managementstrategies for each species. There are no copyright restrictions; please cite thisdata paper when the data are used in publications.info:eu-repo/semantics/publishedVersio

    COOPEDU IV — Cooperação e Educação de Qualidade

    Get PDF
    O quarto Congresso Internacional de Cooperação e Educação-IV COOPEDU, organizado pelo Centro de Estudos Internacionais (CEI) do Instituto UniversitĂĄrio de Lisboa e pela Escola Superior de Educação e CiĂȘncias Sociais do Instituto PolitĂ©cnico de Leiria decorreu nos dias 8 e 9 de novembro de 2018, subordinado Ă  temĂĄtica Cooperação e Educação de Qualidade. Este congresso insere-se numa linha de continuidade de intervenção por parte das duas instituiçÔes organizadoras e dos elementos coordenadores e este ano beneficiou do financiamento do Instituto CamĂ”es, obtido atravĂ©s de um procedimento concursal, que nos permitiu contar com a participação presencial de elementos dos PaĂ­ses Africanos de LĂ­ngua Portuguesa, fortemente implicados nas problemĂĄticas da Educação e da Formação. Contou tambĂ©m com a participação do Instituto CamĂ”es e da Fundação Calouste Gulbenkian, entidades que sistematizaram a sua intervenção nos domĂ­nios da cooperação na ĂĄrea da educação nos Ășltimos anos. A opção pela temĂĄtica da qualidade pareceu aos organizadores pertinente e actual. Com efeito os sistemas educativos dos paĂ­ses que constituem a Comunidade de paĂ­ses de lĂ­ngua portuguesa tĂȘm implementado vĂĄrias reformas mas em vĂĄrios domĂ­nios mantem-se a insatisfação de responsĂĄveis polĂ­ticos, pedagogos, tĂ©cnicos sociais face aos resultados obtidos. AliĂĄs o caminho de procura da Qualidade Ă© interminĂĄvel porque vai a par da aposta na exigĂȘncia e na promoção da cidadania e responsabilidade social. As comunicaçÔes que agora se publicam estĂŁo organizadas em dois eixos: o das PolĂ­ticas da Educação e Formação e o das dimensĂ”es em que se traduzem essas polĂ­ticas. Neste Ășltimo eixo encontramos fios condutores para agregarmos as comunicaçÔes apresentadas

    Pervasive gaps in Amazonian ecological research

    Get PDF

    Pervasive gaps in Amazonian ecological research

    Get PDF
    Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
    • 

    corecore