289 research outputs found

    Development of a decision support tool to facilitate primary care management of patients with abnormal liver function tests without clinically apparent liver disease [HTA03/38/02]. Abnormal Liver Function Investigations Evaluation (ALFIE)

    Get PDF
    Liver function tests (LFTs) are routinely performed in primary care, and are often the gateway to further invasive and/or expensive investigations. Little is known of the consequences in people with an initial abnormal liver function (ALF) test in primary care and with no obvious liver disease. Further investigations may be dangerous for the patient and expensive for Health Services. The aims of this study are to determine the natural history of abnormalities in LFTs before overt liver disease presents in the population and identify those who require minimal further investigations with the potential for reduction in NHS costs

    Quantum critical spin-liquid-like behavior in S = 1/2 quasi-kagome lattice compound CeRh₁-ₓPdₓSn investigated using muon spin relaxation and neutron scattering

    Get PDF
    We present the results of muon spin relaxation (μSR) and neutron scattering on the Ce-based quasikagome lattice CeRh1−xPdxSn (x=0.1 to 0.75). Our ZF-μSR results reveal the absence of static long-range magnetic order down to 0.05~K in x=0.1 single crystals. The weak temperature-dependent plateaus of the dynamic spin fluctuations below 0.2~K in ZF-μSR together with its longitudinal-field (LF) dependence between 0 and 3~kG indicate the presence of dynamic spin fluctuations persisting even at T = 0.05~K without static magnetic order. On the other hand, C4f/T increases as --log T on cooling below 0.9~K, passes through a broad maximum at 0.13~K and slightly decreases on further cooling. The ac-susceptibility also exhibits a frequency independent broad peak at 0.16~K, which is prominent with an applied field H along c-direction. We, therefore, argue that such a behavior for x=0.1 (namely, a plateau in spin relaxation rate (λ) below 0.2~K and a linear T dependence in C4f below 0.13~K) can be attributed to a metallic spin-liquid (SL) ground state near the quantum critical point in the frustrated Kondo lattice. The LF-μSR study suggests that the out of kagome plane spin fluctuations are responsible for the SL behavior. Low energy inelastic neutron scattering (INS) of x = 0.1 reveals gapless magnetic excitations, which are also supported by the behavior of C4f proportional to T1.1 down to 0.06~K

    Appropriate disclosure of a diagnosis of dementia : identifying the key behaviours of 'best practice'

    Get PDF
    Background: Despite growing evidence that many people with dementia want to know their diagnosis, there is wide variation in attitudes of professionals towards disclosure. The disclosure of the diagnosis of dementia is increasingly recognised as being a process rather than a one-off behaviour. However, the different behaviours that contribute to this process have not been comprehensively defined. No intervention studies to improve diagnostic disclosure in dementia have been reported to date. As part of a larger study to develop an intervention to promote appropriate disclosure, we sought to identify important disclosure behaviours and explore whether supplementing a literature review with other methods would result in the identification of new behaviours. Methods: To identify a comprehensive list of behaviours in disclosure we conducted a literature review, interviewed people with dementia and informal carers, and used a consensus process involving health and social care professionals. Content analysis of the full list of behaviours was carried out. Results: Interviews were conducted with four people with dementia and six informal carers. Eight health and social care professionals took part in the consensus panel. From the interviews, consensus panel and literature review 220 behaviours were elicited, with 109 behaviours over-lapping. The interviews and consensus panel elicited 27 behaviours supplementary to the review. Those from the interviews appeared to be self-evident but highlighted deficiencies in current practice and from the panel focused largely on balancing the needs of people with dementia and family members. Behaviours were grouped into eight categories: preparing for disclosure; integrating family members; exploring the patient's perspective; disclosing the diagnosis; responding to patient reactions; focusing on quality of life and well-being; planning for the future; and communicating effectively. Conclusion: This exercise has highlighted the complexity of the process of disclosing a diagnosis of dementia in an appropriate manner. It confirms that many of the behaviours identified in the literature (often based on professional opinion rather than empirical evidence) also resonate with people with dementia and informal carers. The presence of contradictory behaviours emphasises the need to tailor the process of disclosure to individual patients and carers. Our combined methods may be relevant to other efforts to identify and define complex clinical practices for further study.This project is funded by UK Medical Research Council, Grant reference number G0300999

    Origin of reduced magnetization and domain formation in small magnetite nanoparticles

    Get PDF
    The structural, chemical, and magnetic properties of magnetite nanoparticles are compared. Aberration corrected scanning transmission electron microscopy reveals the prevalence of antiphase boundaries in nanoparticles that have significantly reduced magnetization, relative to the bulk. Atomistic magnetic modelling of nanoparticles with and without these defects reveals the origin of the reduced moment. Strong antiferromagnetic interactions across antiphase boundaries support multiple magnetic domains even in particles as small as 12–14 nm

    Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4

    Get PDF
    The complex and intriguing properties of the ferrimagnetic half metal magnetite (Fe3O4) are of continuing fundamental interest as well as being important for practical applications in spintronics, magnetism, catalysis and medicine. There is considerable speculation concerning the role of the ubiquitous antiphase boundary (APB) defects in magnetite, however, direct information on their structure and properties has remained challenging to obtain. Here we combine predictive first principles modelling with high-resolution transmission electron microscopy to unambiguously determine the three-dimensional structure of APBs in magnetite. We demonstrate that APB defects on the {110} planes are unusually stable and induce antiferromagnetic coupling between adjacent domains providing an explanation for the magnetoresistance and reduced spin polarization often observed. We also demonstrate how the high stability of the {110} APB defects is connected to the existence of a metastable bulk phase of Fe3O4, which could be stabilized by strain in films or nanostructures

    MHC class I A region diversity and polymorphism in macaque species

    Get PDF
    The HLA-A locus represents a single copy gene that displays abundant allelic polymorphism in the human population, whereas, in contrast, a nonhuman primate species such as the rhesus macaque (Macaca mulatta) possesses multiple HLA-A-like (Mamu-A) genes, which parade varying degrees of polymorphism. The number and combination of transcribed Mamu-A genes present per chromosome display diversity in a population of Indian animals. At present, it is not clearly understood whether these different A region configurations are evolutionarily stable entities. To shed light on this issue, rhesus macaques from a Chinese population and a panel of cynomolgus monkeys (Macaca fascicularis) were screened for various A region-linked variations. Comparisons demonstrated that most A region configurations are old entities predating macaque speciation, whereas most allelic variation (>95%) is of more recent origin. The latter situation contrasts the observations of the major histocompatibility complex class II genes in rhesus and cynomolgus macaques, which share a high number of identical alleles (>30%) as defined by exon 2 sequencing

    Orally Active Multi-Functional Antioxidants Are Neuroprotective in a Rat Model of Light-Induced Retinal Damage

    Get PDF
    Progression of age-related macular degeneration has been linked to iron dysregulation and oxidative stress that induce apoptosis of neural retinal cells. Since both antioxidants and chelating agents have been reported to reduce the progression of retinal lesions associated with AMD in experimental animals, the present study evaluates the ability of multi-functional antioxidants containing functional groups that can independently chelate redox metals and quench free radicals to protect the retina against light-induced retinal degeneration, a rat model of dry atrophic AMD.Proof of concept studies were conducted to evaluate the ability of 4-(5-hydroxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 4) and 4-(5-hydroxy-4,6-dimethoxypyrimidin-2-yl)-N,N-dimethyl-3,5-dioxopiperazine-1-sulfonamide (compound 8) to reduce retinal damage in 2-week dark adapted Wistar rats exposed to 1000 lx of light for 3 hours. Assessment of the oxidative stress markers 4- hydroxynonenal and nitrotyrosine modified proteins and Thioredoxin by ELISA and Western blots indicated that these compounds reduced the oxidative insult caused by light exposure. The beneficial antioxidant effects of these compounds in providing significant functional and structural protection were confirmed by electroretinography and quantitative histology of the retina.The present study suggests that multi-functional compounds may be effective candidates for preventive therapy of AMD
    corecore