68 research outputs found

    Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites

    Get PDF
    Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter μ, the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, μ was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery

    Temperature effects on an InGaP (GaInP) (55)Fe X-ray photovoltaic cell.

    Get PDF
    This paper investigates the effects of temperature on an InGaP (GaInP) (55)Fe X-ray photovoltaic cell prototype for a radioisotope microbattery (also called a nuclear microbattery). An In0.5Ga0.5P p-i-n (5 μm i-layer) mesa photodiode was illuminated by a standard 206 MBq (55)Fe radioisotope X-ray source and characterised over the temperature range -20 °C to 100 °C. The electrical power output of the device reached its maximum value of 1.5 pW at a temperature of -20 °C. An open circuit voltage and a short circuit current of 0.82 V and 2.5 pA, respectively, were obtained at -20 °C. While the electrical power output and the open circuit voltage decreased with increasing temperature, an almost flat trend was found for the short circuit current. The cell conversion efficiency decreased from 2.1% at -20 °C to 0.7% at 100 °C

    Detecting Subtle Changes in Visuospatial Executive Function and Learning in the Amnestic Variant of Mild Cognitive Impairment

    Get PDF
    BACKGROUND AND PURPOSE: Amnestic mild cognitive impairment (aMCI) is a putative prodromal stage of Alzheimer's disease (AD) characterized by deficits in episodic verbal memory. Our goal in the present study was to determine whether executive dysfunction may also be detectable in individuals diagnosed with aMCI. METHODS: This study used a hidden maze learning test to characterize component processes of visuospatial executive function and learning in a sample of 62 individuals with aMCI compared with 94 healthy controls. RESULTS: Relative to controls, individuals with aMCI made more exploratory/learning errors (Cohen's d = .41). Comparison of learning curves revealed that the slope between the first two of five learning trials was four times as steep for controls than for individuals with aMCI (Cohen's d = .64). Individuals with aMCI also made a significantly greater number of rule-break/error monitoring errors across learning trials (Cohen's d = .21). CONCLUSIONS: These results suggest that performance on a task of complex visuospatial executive function is compromised in individuals with aMCI, and likely explained by reductions in initial strategy formulation during early visual learning and "on-line" maintenance of task rules

    Quantitative Analysis of Immune Response and Erythropoiesis during Rodent Malarial Infection

    Get PDF
    Malarial infection is associated with complex immune and erythropoietic responses in the host. A quantitative understanding of these processes is essential to help inform malaria therapy and for the design of effective vaccines. In this study, we use a statistical model-fitting approach to investigate the immune and erythropoietic responses in Plasmodium chabaudi infections of mice. Three mouse phenotypes (wildtype, T-cell-deficient nude mice, and nude mice reconstituted with T-cells taken from wildtype mice) were infected with one of two parasite clones (AS or AJ). Under a Bayesian framework, we use an adaptive population-based Markov chain Monte Carlo method and fit a set of dynamical models to observed data on parasite and red blood cell (RBC) densities. Model fits are compared using Bayes' factors and parameter estimates obtained. We consider three independent immune mechanisms: clearance of parasitised RBCs (pRBC), clearance of unparasitised RBCs (uRBC), and clearance of parasites that burst from RBCs (merozoites). Our results suggest that the immune response of wildtype mice is associated with less destruction of uRBCs, compared to the immune response of nude mice. There is a greater degree of synchronisation between pRBC and uRBC clearance than between either mechanism and merozoite clearance. In all three mouse phenotypes, control of the peak of parasite density is associated with pRBC clearance. In wildtype mice and AS-infected nude mice, control of the peak is also associated with uRBC clearance. Our results suggest that uRBC clearance, rather than RBC infection, is the major determinant of RBC dynamics from approximately day 12 post-innoculation. During the first 2–3 weeks of blood-stage infection, immune-mediated clearance of pRBCs and uRBCs appears to have a much stronger effect than immune-mediated merozoite clearance. Upregulation of erythropoiesis is dependent on mouse phenotype and is greater in wildtype and reconstitited mice. Our study highlights the informative power of statistically rigorous model-fitting techniques in elucidating biological systems

    Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries

    Get PDF
    Background: Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies in humans. The average 5-year survival rate is one of the lowest among aggressive cancers, showing no significant improvement in recent years. When detected early, HNSCC has a good prognosis, but most patients present metastatic disease at the time of diagnosis, which significantly reduces survival rate. Despite extensive research, no molecular markers are currently available for diagnostic or prognostic purposes. Methods: Aiming to identify differentially-expressed genes involved in laryngeal squamous cell carcinoma (LSCC) development and progression, we generated individual Serial Analysis of Gene Expression (SAGE) libraries from a metastatic and non-metastatic larynx carcinoma, as well as from a normal larynx mucosa sample. Approximately 54,000 unique tags were sequenced in three libraries. Results: Statistical data analysis identified a subset of 1,216 differentially expressed tags between tumor and normal libraries, and 894 differentially expressed tags between metastatic and non-metastatic carcinomas. Three genes displaying differential regulation, one down-regulated (KRT31) and two up-regulated (BST2, MFAP2), as well as one with a non-significant differential expression pattern (GNA15) in our SAGE data were selected for real-time polymerase chain reaction (PCR) in a set of HNSCC samples. Consistent with our statistical analysis, quantitative PCR confirmed the upregulation of BST2 and MFAP2 and the downregulation of KRT31 when samples of HNSCC were compared to tumor-free surgical margins. As expected, GNA15 presented a non-significant differential expression pattern when tumor samples were compared to normal tissues. Conclusion: To the best of our knowledge, this is the first study reporting SAGE data in head and neck squamous cell tumors. Statistical analysis was effective in identifying differentially expressed genes reportedly involved in cancer development. The differential expression of a subset of genes was confirmed in additional larynx carcinoma samples and in carcinomas from a distinct head and neck subsite. This result suggests the existence of potential common biomarkers for prognosis and targeted-therapy development in this heterogeneous type of tumor.Fundação de Amparo a Pesquisa do Estado de São Paulo/FAPESP [05/51467-0]; [04/12054-9]; [07/50894-7]Ludwig Institute for Cancer ResearchConselho Nacional de Pesquisas/CNPqCoordenacao de Aperfeicoamento do Pessoal do Ensino Superior/CAPE

    Atomic Orbitals (AO) and Molecular Orbitals (MO)

    No full text

    Johachidolite, CaAl[B3O7], a Borate with Very Dense Atomic Structure

    No full text

    Interferometric Determination of Dispersion Corrections

    No full text
    • …
    corecore