64 research outputs found

    Review of epidemiologic data on the debate over smokeless tobacco's role in harm reduction

    Get PDF
    Some tobacco researchers have argued that the European Union should remove its ban on a form of low-nitrosamine smokeless tobacco referred to as Swedish 'snus'. This argument has developed in to an international debate over the use of smokeless tobacco as a measure of harm reduction for smokers. Leading authorities in the USA have firmly stated that there is no safe tobacco - a message which does not allow for any discussion of comparative tobacco risks. This commentary is intended to review the origin of the controversy over Swedish 'snus', to examine briefly the meta-analysis on cancer risks by Peter Lee and Jan Hamling (published in July in BMC Medicine) and to discuss the anticipated direction of the debate on tobacco-harm reduction in the USA. We anticipate that much of the debate will shift from the discussion of epidemiologic data to the discussion of the marketing, health communication and economics of smokeless tobacco. While the Food and Drug Administration's newly approved authority over tobacco will undoubtedly affect the smokeless products, it may not be the sole determinant of harm reduction's fate in the USA

    Phospholipase C-Δ Regulates Epidermal Morphogenesis in Caenorhabditis elegans

    Get PDF
    Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-Δ produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-Îł and EGL-8/PLC-ÎČ can compensate for reduced PLC-1 activity. Our work places PLC-Δ into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-Δ

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    • 

    corecore