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Abstract
We aim to present some new Pólya-Szegö type inequalities associated with
Hadamard k-fractional integral operators, which are also used to derive some
Chebyshev type integral inequalities. Further we apply some of the results presented
here to a function which is bounded by the Heaviside functions.
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1 Introduction and preliminaries
We begin by recalling the following Chebyshev functional which has been investigated by
many authors (see, e.g., [–]):

T(f , g; a, b) =


b – a

∫ b

a
f (x)g(x) dx –


(b – a)

∫ b

a
f (x) dx

∫ b

a
g(x) dx, (.)

where f , g : [a, b] → R are integrable functions on [a, b]. Here and in the following, let R
and R

+ be the set of real and positive real numbers, respectively, and R
+
 := R

+ ∪{}. Under
more conditions n ≤ f (x) ≤ N and m ≤ g(x) ≤ M for all x ∈ [a, b], where n, m, N , M are
real constants, the Chebyshev functional (.) satisfies the following inequality, which is
known as Grüss integral inequality (see []; see also [], p.):

∣∣T(f , g; a, b)
∣∣ ≤ 


(M – m)(N – n), (.)

where the constant 
 is sharp. In fact, the equality in (.) holds, for example, by taking

f (x) = g(x) = sgn x –
a + b


(
x ∈ [a, b]

)
.

The Grüss inequality (.) has been investigated a lot and a number of its generalizations
have been presented (see, e.g., [–]).

Let f and g be two positive integrable functions on [a, b] such that

 < m ≤ f (x) ≤ M < ∞ and  < n ≤ f (x) ≤ N < ∞.
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Pólya and Szegö [] established the following inequality:

∫ b
a f (x) dx

∫ b
a g(x) dx

(
∫ b

a f (x)g(x) dx)
≤ 



(√
MN
mn

+
√

mn
MN

)

, (.)

which was used by Dragomir and Diamond [] who proved the following inequality:

∣∣T(f , g; a, b)
∣∣ ≤ (M – m)(N – n)

(b – a)
√

mMnN

∫ b

a
f (x) dx

∫ b

a
g(x) dx. (.)

Fractional calculus is a very helpful tool to perform differentiation and integration of real
or complex number orders. This subject has earned much attention from researchers and
mathematicians during the last few decades (see, e.g., [–]). Among a large number of
the fractional integral operators developed, due to applications in many fields of sciences,
the Riemann-Liouville fractional integral operator and Hadamard fractional integral op-
erator have been extensively investigated.

Let f ∈ L[a, b]. Then the left-sided and the right-sided Hadamard fractional integrals of
order α ≥  and a >  are defined, respectively, by

Hα
a+ f (t) =


�(α)

∫ t

a

(
ln

t
τ

)α–

f (τ )
dτ

τ
( < a < t ≤ b) (.)

and

Hα
b– f (t) =


�(α)

∫ b

t

(
ln

τ

t

)α–

f (τ )
dτ

τ
( < a ≤ t < b). (.)

The theory of k-functions has been investigated since, about a decade ago, Diaz and
Pariguan [] introduced the following generalizations of the classical gamma and beta
functions, with a new parameter k ∈R

+, which are called k-gamma and k-beta functions,
respectively:

�k(α) =
∫ ∞


tα–e– tk

k dt
(	(α) > 

)
(.)

and

Bk(α,β) =

k

∫ 


t

α
k –( – t)

β
k – dt

(
min

{	(α),	(β)
}

> 
)
. (.)

The functions �k defined on R
+ and Bk(x, y) on (, ) satisfy the following properties:

() �k(x + k) = x�k(x);
() �k(k) = ;
() �k(x) is logarithmically convex;
() Bk(x, y) = �k (x)�k (y)

�k (x+y) .
During the past several years, certain interesting properties, identities, and inequalities

involving k-functions have been presented (see, e.g., [–]). Mubeen and Habibullah
[] used the k-gamma function �k (.) to introduce the following Riemann-Liouville
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type k-fractional integral:

Iα
a,kf (t) =


k�k(α)

∫ t

a
(t – x)

α
k –f (x) dx

(
t ∈ [a, b]

)
. (.)

Later, Romero et al. [] also used the k-gamma function �k (.) to introduce the k-
Riemann-Liouville fractional derivative whose properties including a relationship with the
k-fractional integral (.) were presented.

Using the k-gamma function with the parameter k, Mubeen et al. [] have introduced
left-sided and right-sided Hadamard k-fractional integrals of order α ∈ R

+, respectively,
as follows: For f ∈ L[a, b] and k, a ∈ R

+,

Hα
a+,k{f }(t) =


k�k(α)

∫ t

a

(
ln

t
τ

) α
k –

f (τ )
dτ

τ
( < a < t ≤ b) (.)

and

Hα
b–,k{f }(t) =


k�k(α)

∫ b

t

(
ln

τ

t

) α
k –

f (τ )
dτ

τ
( < a ≤ t < b). (.)

Using the Hadamard k-fractional integral and Proposition  in [], we have

Hα
a+,k{}(t) =

(ln(t/a))
α
k

�k(α + k)
(
 < a < t ≤ b; k,α ∈R

+)
(.)

and

Hα
+,k{}(t) =

(ln(t))
α
k

�k(α + k)
(
 < t ≤ b; k,α ∈ R

+)
. (.)

2 Some Pólya-Szegö and Chebyshev type inequalities involving the Hadamard
k-fractional integrals

In this section, we derive some new Pólya-Szegö type inequalities associated with the
Hadamard k-fractional integral operators which are also used to establish some Cheby-
shev type integral inequalities.

Lemma . Let f and g be two positive real integrable functions defined on [a,∞). Also let
ϕ, ϕ, ψ, and ψ be integrable functions on [a,∞) such that

 < ϕ(τ ) ≤ f (τ ) ≤ ϕ(τ ) and  < ψ(τ ) ≤ g(τ ) ≤ ψ(τ ) (.)

for all τ ∈ [a, t] (t > a). Then, for k,α ∈R
+, and a ∈R

+
, the following inequality holds true:

Hα
a+,k{ψψf }(t)Hα

a+,k{ϕϕg}(t)
(Hα

a+,k{(ϕψ + ϕψ)fg}(t)) ≤ 


. (.)

Proof Under the given conditions, we find

f (τ )
g(τ )

≤ ϕ(τ )
ψ(τ )

and
ϕ(τ )
ψ(τ )

≤ f (τ )
g(τ )

(
τ ∈ [a, t] (t > a)

)
, (.)
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from which we have
(

ϕ(τ )
ψ(τ )

–
f (τ )
g(τ )

)(
f (τ )
g(τ )

–
ϕ(τ )
ψ(τ )

)
≥ ,

and so
(

ϕ(τ )
ψ(τ )

+
ϕ(τ )
ψ(τ )

)
f (τ )
g(τ )

≥ f (τ )
g(τ )

+
ϕ(τ )ϕ(τ )
ψ(τ )ψ(τ )

. (.)

The inequality (.) can also be written as follows:

(
ϕ(τ )ψ(τ ) + ϕ(τ )ψ(τ )

)
f (τ )g(τ ) ≥ ψ(τ )ψ(τ )f (τ ) + ϕ(τ )ϕ(τ )g(τ ). (.)

Here, multiplying each side of the inequality (.) by the following non-negative factor:


k�k(α)

(
ln

t
τ

) α
k – 

τ

(
τ ∈ [a, t] (t > a)

)

and integrating the resulting inequality with respective to τ on [a, t], we obtain

Hα
a+,k

{
(ϕψ + ϕψ)fg

}
(t) ≥Hα

a+,k
{
ψψf }(t) + Hα

a+,k
{
ϕϕg}(t). (.)

Applying the AM-GM (the arithmetic-geometric mean) inequality,

a + b ≥ 
√

ab
(
a, b ∈R

+

)

(.)

to the right-hand side of (.), we have

Hα
a+,k

{
(ϕψ + ϕψ)fg

}
(t) ≥ 

√
Hα

a+,k
{
ψψf 

}
(t)Hα

a+,k
{
ϕϕg

}
(t), (.)

which leads to

Hα
a+,k

{
ψψf }(t)Hα

a+,k
{
ϕϕg}(t) ≤ 


(
Hα

a+,k
{

(ϕψ + ϕψ)fg
}

(t)
).

This completes the proof. �

The following corollary is easily seen to be a special case of Lemma ..

Corollary  Let f and g be two real positive integrable functions defined on [a,∞) such
that

 < m ≤ f (τ ) ≤ M < ∞ and  < n ≤ g(τ ) ≤ N < ∞ (
τ ∈ [a, t] (t > a)

)
, (.)

where n, N , m, M are real constants. Then, for all t, k ∈R
+ and α ∈R

+, we have

Hα
a+,k{f }(t)Hα

a+,k{g}(t)
(Hα

a+,k{fg}(t)) ≤ 


(√
mn
MN

+
√

MN
nm

)

. (.)
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Lemma . Let f and g be two positive real integrable functions defined on [a,∞). Also let
ϕ, ϕ, ψ, and ψ be integrable functions on [a,∞) satisfying the condition (.). Then, for
t > a (a ∈R

+
) and k,α,β ∈R

+, the following inequality holds true:

Hα
a+,k{ϕϕ}(t)Hβ

a+,k{ψψ}(t)Hα
a+,k{f }(t)Hβ

a+,k{g}(t)

(Hα
a+,k{ϕf }(t)Hβ

a+,k{ψg}(t) + Hα
a+,k{ϕf }(t)Hβ

a+,k{ψg}(t))
≤ 


. (.)

Proof We find from (.) that
(

ϕ(τ )
ψ(ρ)

–
f (τ )
g(ρ)

)
≥  and

(
f (τ )
g(ρ)

–
ϕ(τ )
ψ(ρ)

)
≥ 

(
τ ,ρ ∈ [a, t] (t > a)

)
,

which yields

(
ϕ(τ )
ψ(ρ)

+
ϕ(τ )
ψ(ρ)

)
f (τ )
g(ρ)

≥ f (τ )
g(ρ)

+
ϕ(τ )ϕ(τ )
ψ(ρ)ψ(ρ)

. (.)

Multiplying each side of the inequality (.) by ψ(ρ)ψ(ρ)g(ρ), we get

ϕ(τ )f (τ )ψ(ρ)g(ρ)+ϕ(τ )f (τ )ψ(ρ)g(ρ) ≥ ψ(ρ)ψ(ρ)f (τ )+ϕ(τ )ϕ(τ )g(ρ). (.)

Again multiplying each side of the inequality (.) by the following non-negative factor:


k�k(α)�k(β)

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k – 

τρ

(
τ ,ρ ∈ [a, t](t > a)

)

and integrating the resulting inequality with respect to τ and ρ on [a, t], we have

Hα
a+,k{ϕf }(t)Hβ

a+,k{ψg}(t) + Hα
a+,k{ϕf }(t)Hβ

a+,k{ψg}(t)

≥Hα
a+,k

{
f }(t)Hβ

a+,k{ψψ}(t) + Hβ

a+,k{ϕϕ}(t)Hα
a+,k

{
g}(t). (.)

Applying the AM-GM inequality (.) to (.), we obtain

Hα
a+,k{ϕf }(t)Hβ

a+,k{ψg}(t) + Hα
a+,k{ϕf }(t)Hβ

a+,k{ψg}(t)

≥ 
√
Hα

a+,k
{

f 
}

(t)Hβ

a+,k{ψψ}(t)Hα
a+,k{ϕϕ}(t)Hβ

a+,k
{

g
}

(t), (.)

which is easily seen to yield the desired inequality (.). Hence the proof is complete.
�

Corollary  Let f and g be two positive integrable functions on interval [a,∞) satisfying
the conditions in (.). Then, for t >  and k,α,β ∈R

+, we have

(ln t)
α+β

k

�k(α + k)�k(β + k)
Hα

+,k{f (t)}Hβ

+,k{g(t)}
(Hα

+,k{f (t)} + Hβ

+,k{g(t)})
≤ 



(√
mn
MN

+
√

MN
mn

)

. (.)

Lemma . Suppose that all assumptions of Lemma . are satisfied. Then, for t > a and
α,β ∈ R

+, the following inequality holds true:

Hα
a+,k

{
f }(t)Hβ

a+,k
{

g}(t) ≤Hα
a+,k

{
(ϕfg)/ψ

}
(t)Hβ

a+,k
{

(ψfg)/ϕ
}

(t). (.)
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Proof Using the conditions (.), we get


k�k(α)

∫ t

a

(
ln

t
τ

) α
k –

f (τ )
dτ

τ
≤ 

k�k(α)

∫ t

a

(
ln

t
τ

) α
k –

ϕ(τ )
ψ(τ )

f (τ )g(τ )
dτ

τ
,

which implies

Hα
a+,k

{
f }(t) ≤Hα

a+,k
{

(ϕfg)/ψ
}

(t). (.)

Similarly we have


k�k(β)

∫ t

a

(
ln

t
ρ

) β
k –

g(ρ)
dρ

ρ
≤ 

k�k(β)

∫ t

a

(
ln

t
ρ

) β
k –

ψ(ρ)
ϕ(ρ)

f (ρ)g(ρ)
dρ

ρ

and so

Hβ

a+,k
{

g}(t) ≤Hβ

a+,k
{

(ψfg)/ϕ
}

(t). (.)

Multiplying the inequalities (.) and (.) side by side and considering all the involved
terms are non-negative real numbers, we obtain the desired inequality (.). �

It is easy to see from Lemma . that the assertion in Corollary  holds true.

Corollary  Let f and g be two positive integrable functions on interval [a,∞) satisfying
the conditions in (.). Then, for t > a and α,β ∈R

+, we have

Hα
a+,k{f }(t)Hβ

a+,k{g}(t)

Hα
a+,k{fg}(t)Hβ

a+,k{fg}(t)
≤ MN

mn
. (.)

Theorem  Let f and g be two positive integrable functions on interval [a,∞). Suppose
that there exist four positive functions ϕ, ϕ, ψ, and ψ satisfying the conditions (.).
Then, for t > a and k,α,β ∈R

+, the following inequality holds true:

∣∣∣∣ (ln(t/a))
β
k

�k(β + k)
Hα

a+,k{fg}(t) +
(ln(t/a))

α
k

�k(α + k)
Hβ

a+,k{fg}(t)

– Hα
a+,k{f }(t)Hβ

a+,k{g}(t) – Hα
a+,k{g}(t)Hβ

a+,k{f }(t)
∣∣∣∣

≤ ∣∣M(f ,ϕ,ϕ)(t) + M(f ,ϕ,ϕ)(t)
∣∣ 



× ∣∣M(g,ψ,ψ)(t) + M(g,ψ,ψ)(t)
∣∣ 

 , (.)

where

M(u, v, w)(t) :=
(ln(t/a))

β
k

�k(β + k)
(Hα

a+,k{(v + w)u}(t))

Hα
a+,k{vw}(t)

– Hα
a+,k{u}(t)Hβ

a+,k{u}(t)
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and

M(u, v, w)(t) :=
(ln(t/a))

α
k

�k(α + k)
(Hβ

a+,k{(v + w)u}(t))

Hβ

a+,k{vw}(t)
– Hα

a+,k{u}(t)Hβ

a+,k{u}(t).

Proof Let

H(τ ,ρ) :=
(
f (τ ) – f (ρ)

)(
g(τ ) – g(ρ)

)
,

or, equivalently,

H(τ ,ρ) = f (τ )g(τ ) + f (ρ)g(ρ) – f (τ )g(ρ) – f (ρ)g(τ ). (.)

Upon multiplying each side of (.) by


k�k(α)�k(β)

(
ln

x
τ

) α
k –(

ln
x
ρ

) β
k – 

τρ

and integrating the resulting identity with respect to τ and ρ on [a, t], we get


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

H(τ ,ρ)
dτ

τ

dρ

ρ

=
(ln(t/a))

β
k

�k(β + k)
Hα

a+,k{fg}(t) +
(ln(t/a))

α
k

�k(α + k)
Hβ

a+,k{fg}(t)

– Hα
a+,k{f }(t)Hβ

a+,k{g}(t) – Hβ

a+,k{f }(t)Hα
a+,k{g}(t). (.)

Making use of the weighted Cauchy-Schwarz inequality for double integrals in (.), we
have

∣∣∣∣ 
k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

H(τ ,ρ)
dτ

τ

dρ

ρ

∣∣∣∣

≤
[


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

f (τ )
dτ

τ

dρ

ρ

+


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

f (ρ)
dτ

τ

dρ

ρ

–


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

f (τ )f (ρ)
dτ

τ

dρ

ρ

] 


×
[


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

g(τ )
dτ

τ

dρ

ρ

+


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

g(ρ)
dτ

τ

dρ

ρ

–


k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

g(τ )g(ρ)
dτ

τ

dρ

ρ

] 


. (.)
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Then, upon using the Hadamard k-fractional integrals, we get

∣∣∣∣ 
k�k(α)�k(β)

∫ t

a

∫ t

a

(
ln

t
τ

) α
k –(

ln
t
ρ

) β
k –

H(τ ,ρ)
dτ

τ

dρ

ρ

∣∣∣∣

≤
[

(ln(t/a))
β
k

�k(β + k)
Hα

a+,k
{

f }(t) +
(ln(t/a))

α
k

�k(α + k)
Hβ

a+,k
{

f }(t) – Hα
a+,k{f }(t)Hβ

a+,k{f }(t)
] 



×
[

(ln(t/a))
β
k

�k(β + k)
Hα

a+,k
{

g}(t) +
(ln(t/a))

α
k

�k(α + k)
Hβ

a+,k
{

g}(t)

– Hα
a+,k{g}(t)Hβ

a+,k{g}(t)
] 


. (.)

Setting ψ(t) = ψ(t) = g(t) =  in Lemma ., we obtain

(ln(t/a))
β
k

�k(β + k)
Hα

a+,k
{

f }(t) ≤ (ln(t/a))
β
k

�k(β + k)
(Hα

a+,k{(ϕ + ϕ)f }(t))

Hα
a+,k{ϕϕ}(t)

,

which leads to

(ln(t/a))
β
k

�k(β + k)
Hα

a+,k
{

f }(t) – Hα
a+,k{f }(t)Hβ

a+,k{f }(t)

≤ (ln(t/a))
β
k

�k(β + k)
(Hα

a+,k{(ϕ + ϕ)f }(t))

Hα
a+,k{ϕϕ}(t)

– Hα
a+,k{f }(t)Hβ

a+,k{f }(t)

= M(f ,ϕ,ϕ)(t) (.)

and

(ln(t/a))
α
k

�k(α + k)
Hβ

a+,k
{

f }(t) – Hα
a+,k{f }(t)Hβ

a+,k{f }(t)

≤ (ln(t/a))
α
k

�k(α + k)
(Hβ

a+,k{(ϕ + ϕ)f }(t))

Hβ

a+,k{ϕϕ}(t)
– Hα

a+,k{f }(t)Hβ

a+,k{f }(t)

= M(f ,ϕ,ϕ)(t). (.)

Similarly, taking ϕ(t) = ϕ(t) = f (t) =  in Lemma ., we get

(ln(t/a))
β
k

�k(β + k)
Hα

a+,k
{

g}(t) – Hα
a+,k{g}(t)Hβ

a+,k{g}(t) ≤ M(g,ψ,ψ)(t) (.)

and

(ln(t/a))
α
k

�k(α + k)
Hβ

a+,k
{

g}(t) – Hα
a+,k{g}(t)Hβ

a+,k{g}(t) ≤ M(g,ψ,ψ)(t). (.)

Finally, by combining the inequalities (.)-(.), we can get the desired inequality
(.). This completes the proof. �

The following assertion is a special case of Theorem  when α = β .
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Theorem  Suppose that the assumptions of Theorem  are satisfied. Then, for t >  and
α ∈ R

+, the following inequality holds true:

∣∣∣∣ (ln(t))
α
k

�k(α + k)
Hα

a+,k{fg}(t) – Hα
a+,k{f }(t)Hα

a+,k{g}(t)
∣∣∣∣

≤ ∣∣M(f ,ϕ,ϕ)(t)M(g,ϕ,ϕ)(t)
∣∣ 

 , (.)

where

M(u, v, w)(t) :=
(ln(t))

α
k

�k(α + k)
(Hα

a+,k{(v + w)u}(t))

Hα
a+,k{vw}(t)

–
(
Hα

a+,k{u}(t)
).

Remark . Setting ϕ = m, ϕ = M, ψ = n, and ψ = N , we have

M(f , m, M)(t) =
(M – m)

mM
(
Hα

a+,k{f }(t)
)

and

M(g, n, N)(t) =
(N – n)

nN
(
Hα

a+,k{g}(t)
).

Corollary  Let f and g be two positive integrable functions on [a,∞) satisfying the con-
dition (.). Then, for t > a and α ∈R

+, we have

∣∣∣∣ (ln(t/a))
α
k

�k(α + k)
Hα

a+,k{fg}(t) – Hα
a+,k{f }(t)Hα

a+,k{g}(t)
∣∣∣∣

≤ (M – m)(N – n)

√

mMnN
Hα

a+,k{f }(t)Hα
a+,k{g}(t). (.)

3 Applications
In this section we apply Hadamard k-fractional integrals to a function which is bounded
by the Heaviside functions.

The simplest piecewise continuous function is the unit step function, which is known
as the Heaviside function, defined by

uc(t) =

{
 if u ≥ c,
 if u < c.

The unit step function is basically an on-off switch which is very useful in differential
equations and piecewise functions when there is a large number of pieces, for example,
Riemann sums as in Figure . Using Heaviside function, a piecewise continuous function
ϕ(t) defined on an interval [a, T] can be written as follows:

ϕ(t) = m
(
ut (t) – ut (t)

)
+ m

(
ut (t) – ut (t)

)
+ m

(
ut (t) – ut (t)

)
+ · · · + mp+utp (t)

= mut + (m – m)ut (t) + (m – m)ut (t) + · · · + (mp+ – mp)utp (t)

=
p∑

k=

(mk+ – mk)utk (t), (.)
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Figure 1 Functions f , ϕ1, and ϕ2.

where m = , mi ∈ R (i = , , . . . , p + ) and a = t < t < t < · · · < tp < tp+ = T . Similarly
we define the functions ϕ, ψ, and ψ as follows:

ϕ(t) =
p∑

k=

(Mk+ – Mk)utk (t), (.)

ψ(t) =
p∑

k=

(nk+ – nk)utk (t), (.)

ψ(t) =
p∑

k=

(Nk+ – Nk)utk (t), (.)

where n = N = M =  and ni, Ni, Mi ∈R (i = , , . . . , p + ).
Let f be an integrable function on [a, T] which satisfies the condition (.) with the

functions ϕ, ϕ, ψ, and ψ in (.), (.), (.) and (.), respectively. Then we get
mj+ ≤ f (t) ≤ Mj+ for each t ∈ (tj, tj+) (j = , , . . . , p). For example, Figure  represents
the case p = .

Then the Hadamard k-fractional integral of f on [a, T] can be defined as follows:

Hα
a+,k{f }(T) =

p∑
j=

Hα
tj ,tj+,k{f }(t), (.)

where

Hα
tj ,tj+,k{f }(t) :=


k�k(α)

∫ tj+

tj

(
ln

t
s

) α
k –

f (s)
ds
s

(j = , , , . . . , p). (.)

Proposition  Let f and g be two positive integrable functions on [a, T] which satisfy the
condition (.) with the functions ϕ, ϕ, ψ, and ψ in (.), (.), (.), and (.), respec-
tively. Then, for α ∈R

+, the following inequality holds true:

( p∑
j=

nj+Nj+Hα
tj ,tj+,k

{
f }(T)

)( p∑
j=

mj+Mj+Hα
tj ,tj+,k

{
g}(T)

)

≤ 


p∑
j=

(nj+Nj+ + mj+Mj+)
(
Hα

a+,k{fg}(T)
). (.)
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Proof Using the Hadamard k-fractional integral in (.), we get

Ha+,k
{
ψψf }(T) =

p∑
j=

nj+Nj+Hα
tj ,tj+,k

{
f }(T), (.)

Ha+,k
{
ϕϕg}(T) =

p∑
j=

mj+Mj+Hα
tj ,tj+,k

{
g}(T), (.)

and

Ha+,k
{

(ϕψ + ϕψfg)
}

(T) =
p∑

j=

(mj+nj+ + Mj+Nj+)Hα
tj ,tj+,k{fg}(T). (.)

Then substituting equalities (.), (.), and (.) for the result in Lemma . yields the
desired result (.). �

Proposition  Suppose that assumptions of Proposition  are satisfied. Then, for k,α,β ∈
R

+, we have

∣∣∣∣ (ln(t/a))
β
k

�k(β + k)
Hα

a+,k{fg}(T) +
(ln(t/a))

α
k

�k(α + k)
Hβ

a+,k{fg}(T)

– Hα
a+,k{f }(t)Hβ

a+,k{g}(T) – Hβ

a+,k{f }(t)Hα
a+,k{f }(T)

∣∣∣∣
≤ ∣∣M∗

 (f , mj+, Mj+)(t) + M∗
(f , mj+, Mj+)(T)

∣∣ 


× ∣∣M∗
 (g, nj+, Nj+)(t) + M∗

(g, nj+, Nj+)(T)
∣∣ 

 , (.)

where

M∗
 (u, v, w)(t) :=

(ln(t/a))
β
k �k(α + k)

�k(β + k)

∑p
j=(v + w)(Hα

tj ,tj+,k{u}(t))

∑p
j= vw[(ln(t/tj)]

α
k – [ln(t/tj+))

α
k ]

–
(
Hα

a+,k{u}(T)
)(
Hβ

a+,k{u}(T)
)
,

M∗
(u, v, w)(t) :=

(ln(t/a))
α
k �k(β + k)

�k(α + k)

∑p
j=(v + w)(Hβ

tj ,tj+,k{u}(t))

∑p
j= vw[(ln(t/tj)]

β
k – [ln(t/tj+))

β
k ]

–
(
Hβ

a+,k{u}(t)
)(
Hα

a+,k{u}(t)
)
.

Proof Since

Hα
tj ,tj+,k{f }(T) =


k�k(α)

∫ tj+

tj

(
ln

t
s

) α
k –

f (s)
ds
s

=
(ln(t/tj))

α
k – (ln(t/tj+))

α
k

�k(α + k)
,
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we get

Ha+,k{ϕϕ}{T} =
p∑

j=

mj+Mj+

�k(α + k)
[(

ln(t/tj)
) α

k –
(
ln(t/tj+)

) α
k
]

and

Ha+,k{ψψ}{T} =
p∑

j=

nj+Nj+

�k(α + k)
[(

ln(t/tj)
) α

k –
(
ln(t/tj+)

) α
k
]
.

After some computations, we have

M(f ,ϕ,ϕ)(T) =
(ln(t/a))

β
k �k(α + k)

�k(β + k)

∑p
j=(mj+ + Mj+)(Hα

tj ,tj+,k{f }(t))

∑p
j= mj+Mj+[(ln(t/tj)]

α
k – [ln(t/tj+))

α
k ]

–
(
Hα

a+,k{f }(T)
)(
Hβ

a+,k{f }(T)
)
,

M(g,ψ,ψ)(T) =
(ln(t/a))

β
k �k(α + k)

�k(β + k)

∑p
j=(nj+ + Nj+)(Hα

tj ,tj+,k{g}(t))

∑p
j= nj+Nj+[(ln(t/tj)]

α
k – [ln(t/tj+))

α
k ]

–
(
Hα

a+,k{g}(T)
)(
Hβ

a+,k{g}(T)
)
,

M(f ,ϕ,ϕ)(T) =
(ln(t/a))

α
k �k(β + k)

�k(α + k)

∑p
j=(mj+ + Mj+)(Hβ

tj ,tj+,k{f }(t))

∑p
j= mj+Mj+[(ln(t/tj)]

β
k – [ln(t/tj+))

β
k ]

–
(
Hα

a+,k{g}(T)
)(
Hβ

a+,k{g}(T)
)
,

and

M(g,ψ,ψ)(t) =
(ln(t/a))

α
k �k(β + k)

�k(α + k)

∑p
j=(nj+ + Nj+)(Hβ

tj ,tj+,k{g}(T))

∑p
j= nj+Nj+[(ln(t/tj)]

β
k – [ln(t/tj+))

β
k ]

–
(
Hα

a+,k{g}(T)
)(
Hβ

a+,k{g}(T)
)
.

By applying the results here to Theorem , we obtain the desired inequality (.). Hence
the proof is complete. �

The special case of Proposition  when α = β is seen immediately to reduce to the result
in Corollary .

Corollary  Suppose that the assumptions of Proposition  are satisfied. Then, for k,α ∈
R

+, the following inequality holds true:

∣∣∣∣ (ln(t/a))
α
k

�k(α + k)
Hα

a+,k{fg}(T) – Hα
a+,k{f }(T)Hα

a+,k{f }(T)
∣∣∣∣

≤ ∣∣M∗(f , mj+, Mj+)(T)M∗(g, nj+, Nj+)(T)
∣∣ 

 , (.)
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where

M∗(u, v, w)(t) =
(ln(t/a))

α
k



∑p
j=(v + w)(Hα

tj ,tj+,k{u}(t))

∑p
j= vw[(ln(t/tj)]

α
k – [ln(t/tj+))

α
k ]

–
(
Hα

a+,k{u}(t)
).

We conclude this paper by remarking that all the results presented in this paper can be
converted into those for the right-sided Hadamard k-fractional integral.
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