11 research outputs found

    Quantum chaos with complex, non-periodic orbits

    Get PDF
    We show that special types of orbits, which are nonperiodic and complex “saddle orbits” (SOs), describe accurately the quantal and experimental current oscillations in the resonant tunneling diode in tilted fields. The SOs solve the puzzle of broad regions of experimental oscillations where we find no real or complex periodic orbit (PO) that can explain the data. The SOs succeed in regimes involving several nonisolated POs, where PO formulas fail. We show that their contribution can, unexpectedly, decay very slowly in the classical limit

    Imaging Magnetic Focusing of Coherent Electron Waves

    Full text link
    The magnetic focusing of electrons has proven its utility in fundamental studies of electron transport. Here we report the direct imaging of magnetic focusing of electron waves, specifically in a two-dimensional electron gas (2DEG). We see the semicircular trajectories of electrons as they bounce along a boundary in the 2DEG, as well as fringes showing the coherent nature of the electron waves. Imaging flow in open systems is made possible by a cooled scanning probe microscope. Remarkable agreement between experiment and theory demonstrates our ability to see these trajectories and to use this system as an interferometer. We image branched electron flow as well as the interference of electron waves. This technique can visualize the motion of electron waves between two points in an open system, providing a straightforward way to study systems that may be useful for quantum information processing and spintronics

    Periodic orbit theory for resonant tunneling diodes: Comparison with quantum and experimental results

    No full text
    We investigate whether the quantal and experimental amplitudes of current oscillations of Resonant Tunneling Diodes in tilted fields are obtainable from Periodic Orbit (PO) theories by considering recently proposed PO approaches. We show, for the first time, that accurate amplitudes and frequency shifts for the current oscillations (typically to within a few %) can be obtained from a simple analytical formula both in the stable (torus-quantization) limit and the unstable regimes of the experiments which are dominated by isolated PO's. But we find that the PO approach does not describe quantitatively the dynamically interesting intermediate experimental regimes which appear to be dominated by contributions from complex orbits and multiple non-isolated PO's. We conclude that these regimes will not easily be described by the usual PO approach, even with simple normal forms.Comment: 5 pages, 4 figure

    New generation of two-dimensional spintronic systems realized by coupling of Rashba and Dirac fermions

    Get PDF
    Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.We acknowledges funding from the University of Basque Country UPV/EHU (IT-756-13), the Departamento de Educacion del Gobierno Vasco, the Tomsk State University Academic D.I. Mendeleev Fund Program (grant No. 8.1.05.2015), the Spanish Ministry of Economy and Competitiveness MINECO (Grant No. FIS2013-48286-C2-1-P), Saint Petersburg State University (project 11.50.202.2015), and the Russian Foundation for Basic Research (Grant No. 15-02-02717). Numerical calculations were performed on the SKIF-Cyberia supercomputer at the National Research Tomsk State University. We also thank A. Nikitin for stimulating discussions and reading the manuscript

    The Sodium-Potassium Pump Controls the Intrinsic Firing of the Cerebellar Purkinje Neuron

    Get PDF
    In vitro, cerebellar Purkinje cells can intrinsically fire action potentials in a repeating trimodal or bimodal pattern. The trimodal pattern consists of tonic spiking, bursting, and quiescence. The bimodal pattern consists of tonic spiking and quiescence. It is unclear how these firing patterns are generated and what determines which firing pattern is selected. We have constructed a realistic biophysical Purkinje cell model that can replicate these patterns. In this model, Na+/K+ pump activity sets the Purkinje cell's operating mode. From rat cerebellar slices we present Purkinje whole cell recordings in the presence of ouabain, which irreversibly blocks the Na+/K+ pump. The model can replicate these recordings. We propose that Na+/K+ pump activity controls the intrinsic firing mode of cerbellar Purkinje cells
    corecore