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Abstract

We investigate the spin accumulations of Aharonov-Bohm interferometers with embedded quantum dots by
considering spin bias in the leads. It is found that regardless of the interferometer configurations, the spin
accumulations are closely determined by their quantum interference features. This is mainly manifested in the
dependence of spin accumulations on the threaded magnetic flux and the nonresonant transmission process.
Namely, the Aharonov-Bohm-Fano effect is a necessary condition to achieve the spin accumulation in the quantum
dot of the resonant channel. Further analysis showed that in the double-dot interferometer, the spin accumulation
can be detailedly manipulated. The spin accumulation properties of such structures offer a new scheme of spin
manipulation. When the intradot Coulomb interactions are taken into account, we find that the electron interactions
are advantageous to the spin accumulation in the resonant channel.
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Background
Quantum dot (QD), especially coupled-QD system (i.e.,
the QD molecule), is of fundamental interest in physics
and possesses potential applications, such as quantum
logic gates[1,2]. As a result, many experimental and
theoretical works have paid so much attention to the
electron transport properties of various multi-QD sys-
tems in the past decades [3-10]. Besides, the progress of
nanotechnology enables researchers to fabricate a variety
of coupled-QD structures with sizes smaller than the elec-
tron coherence length [11]. This also accelerates the devel-
opment of researches on the coupled-QD characteristics.
With respect to the coupled-QD structures, the typical

one is Aharonov-Bohm (AB) interferometer with one QD
or whose individual arm is of one QD, respectively [12-
38]. In such kind of structure, the AB phase can adjust
the quantum interference, leading to abundant interesting
results. Kobayashi et al. performed significant work to
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study the quantum interferences in the AB interferom-
eters with embedded QDs [18-20]. According to their
conclusions, the Fano effect, which manifests itself in
the asymmetric lineshape of the transport spectrum, can
be observed in such structures by constructing nonres-
onant and resonant channels for electron transmission.
Moreover, they showed that the orientation of the Fano
lineshape changes periodically with the magnetic flux.
Due to this reason, in the AB interferometer with QDs,
the AB-Fano interference attracted more attention and
was further investigated [22,23]. On the other hand, lots
of theoretical investigations about electron transport
behaviors of the AB interferometer have been reported. It
was found that the interplay between the AB-Fano effect
and the other mechanisms, e.g., Kondo physics and the
spin-orbit interaction, indeed causes many interesting
phenomena [24-38].
Electron not only has a charge but also spins with

s = 1
2 ; accordingly, the electron spin in the QD has been

suggested as an ideal candidate for the qubit. Then, the
coherent generation and control of electron spins in QDs
has recently become one main subject in spintronics
[39-42]. Various schemes have been proposed: by
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considering the spin transport and spin accumulation
in QDs, based on the magnetic means, the spin-obit
interaction, etc.[43-49]. Since in QD structures, the quan-
tum interference contributes significantly to the electron
motion properties, it is natural to question about the
role of quantum interference on the spin accumulation.
However, to our knowledge, little attention has been paid
to such an issue so far. In this work, we choose the AB
interferometer with embedded QDs and clarify the effect
of a typical interference manner, i.e., the AB interference,
on the spin manipulation in QDs. In doing so, we intro-
duce a symmetric spin battery to the interferometer by
considering the chemical potentials of the leads to be
μLσ = εF + σ eVs

2 and μRσ = εF + σ̄ eVs
2 [50-54]. We

intend to investigate the role of quantum interference
in adjusting the spin-bias-induced spin accumulation.
εF is the Fermi level of the system at the zero-spin-bias
case, and Vs is the magnitude of the spin bias. Due to the
progress in experiment, such a scheme can be realized by
injecting the charge current from a ferromagnetic source
( or a magnetic field ) into the leads of the QD structure
[55-60]. Consequently, we find that to achieve the spin
manipulation in the QDs of the AB interferometer, a finite
magnetic flux and a nonresonant channel are prerequi-
sites. Namely, the AB-Fano interference, not only the AB
effect, is a necessary condition to realize the spin accu-
mulation in the QDs. Also, the spin accumulation can be
adjusted by varying the quantum interference of the inter-
ferometer. Therefore, we believe that such a structure is a
promising candidate for spin manipulation.

Model and numerical results
The Hamiltonian that describes the electron motion in
the AB interferometer can be written as

H = HL + HR + HD + HT . (1)

Hα (α = L,R) is the Hamiltonian in lead-α. HD is the
Hamiltonian in the QDs, and the last term, HT , denotes
electron traveling between the two leads. Hα takes a
form as Hα = ∑

kσ εαkσ c†αkσ cαkσ , where c†
αkσ (cαkσ ) is

the creation (annihilation) operator corresponding to the
basis in lead-α. εαkσ is the single-particle level. Since we
investigate the electron properties of two AB interfer-
ometers with one QD or two QDs, the expressions of
HD and HT will be determined by the geometries of the
interferometers.

The one-QD AB interferometer
We first focus on the AB interferometer of one QD,
whose schematic is shown in Figure 1a. Then in such
a case, HD = ∑

σ εd†σdσ + Un↑n↓ and HT = ∑
kσ

WLRc†Lkσ cRkσ + ∑
αkσ Vαc†αkσdσ + h.c..d†σ (dσ ) are the

creation (annihilation) operator of electron in the QD,

and ε is the energy level of QD. U is the intradot electron
interaction strength. WLR denotes the direct transmis-
sion between the leads, and Vα represents the coupling
between the QD and lead-α.
The electron properties can be evaluated by using the

nonequilibrium Green function technique. In the Green
function space, the average electron occupation number
of the QD is denoted as [61,62]

〈nσ 〉 = − i
2π

∫
dωG<

dd,σ (ω). (2)

G< is the lesser Green function, which can be obtained
from the Dyson equation

G<(ω) = (1 + �rGr)g<(1 + �aGa) + Gr�<Ga. (3)

Gr andGa are the retarded and advancedGreen functions,
respectively. Due to the presence of electron interaction,
the Green function is difficult to solve. However, if the sys-
tem temperature is higher than the Kondo temperature,
the electron interaction term can be included by using
the Hubbard-I approximation [61-63]. In this work, we
would like to consider the case of weak electron correla-
tion; then, the retarded Green function can be analytically
solved within the Hubbard-I approximation, i.e.,

[Gr
σ ]−1 =

⎡
⎢⎢⎣

gr−1
L −WLR − VL

− W ∗
LR gr−1

R − VR

− V ∗
L −V ∗

R gr−1
dσ

⎤
⎥⎥⎦ , (4)

where grα is the Green function of the isolated lead-
α. Due to the continuum states in the leads, we write
grα = −iπρ(ω) with ρ(ω) being the density of states of
the leads. grdσ

, the Green function of the isolated QD,
can be written as grdσ

= 1−〈nσ̄ 〉
ω−ε+i0+ + 〈nσ̄ 〉

ω−ε−U+i0+ in the
Hubbard-I approximation. In this structure, G<

dd,σ can
be expressed as G<

dd,σ = ∑
α Gr

dα,σ g
r−1
α g<

ασ ga−1
α Ga

αd,σ ,
where g<

ασ = 2iπρ(ω)fασ (ω) is the lesser Green func-
tion of the isolated lead-α with the Fermi distribu-
tion function fασ (ω) =[ exp ω−μασ

kBT + 1]−1. When the
bandwidth of the leads is large enough, the density of
states can be viewed as a constant. Accordingly, we have
G<
dd,σ = 2i

πρ

∑
α |Gr

dα,σ |2fασ (ω). As a result, 〈nσ 〉 can be
re-expressed as

〈nσ 〉 = 1
π2ρ

∑
α

∫
dω|Gr

dα,σ (ω)|2fασ (ω). (5)

Furthermore, by defining 〈nc〉 = ∑
σ 〈nσ 〉 and 〈ns〉 =

〈n↑〉 − 〈n↓〉, we can investigate the features of the charge
and spin in the QD.
With the help of Equation 5, we investigate the average

electron occupation number influenced by the structure
parameters in Figure 1b,c,d. The system temperature is
fixed at kBT = 0.1. For the other parameters, we choose
the spin bias eVs = 1.0 and the QD-lead coupling strength
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Figure 1 The AB interferometer of one QD. (a) Schematic of an AB interferometer with an embedded QD. (b, c, d) The average electron
occupation number and spin accumulation in QD affected by the structure parameters. The relevant parameters are taken to be ρ = 1, |Vα | = 0.1,
and eVs = 1.0.

|Vα| = 0.1. In Figure 1b, it is observed that at the case
of φ = 0.5π , a spin-up electron can enter the QD only
when the QD level decreases to the position of ε = −0.5.
Instead, the QD is able to confine a spin-down electron
if ε < 0.5. By comparing the properties of opposite-spin
electrons, we might as well consider that the spin-up and
spin-down electrons are both in equilibrium, but they
‘feel’ the different ‘Fermi levels’, with the distance between
them being the spin bias magnitude. Therefore, in such a
structure, the striking spin accumulation can be realized
in the QD. Next, in Figure 1c,d, by assuming ε = 0, we
present the influence of φ and W on the average occu-
pation number of electron in the QD, respectively. It is
observed that with the change of magnetic flux, the aver-
age occupation of different-spin electrons show opposite
variation features. Different from the result of φ = 0.5π ,
when the magnetic flux is increased to φ = 1.5π , the QD
confines a spin-up electron. Then, the spin accumulation
in the QD can be completely adjusted. Alternatively, with
W increased to W = 0.3, the spin accumulation propor-
tionally enhances; however, the further increase ofW will
lead to the suppression of spin accumulation.
Since the structure is relatively simple, we try to

clarify the numerical result in an analytical way.
Accordingly, we write out the expression ofGr

dL,σ by using

Equation 4, i.e., Gr
dL,σ (ω) = 1

Dt
[ grLWLRgrRVR + grLVL] and

Gr
dR,σ (ω) = 1

Dt
[ grR W

∗
LR g

r
L VL + grR VR] with Dt = grL g

r
R

det{[Gr
σ ]−1 }. When a local magnetic flux is applied, its

effect on the quantum interference can be well defined by
writing WLR = Weiφ . Here, W is the strength of the lead-
lead coupling, and the phase factor φ = 


φ0
where 
 is the

magnetic flux with the magnetic flux quantum φ0 = hc
e .

In the case of weak QD-lead coupling, e.g., |Vα| = 0.1,
the analytical form of 〈nσ 〉 can be approximated as
〈nσ 〉 = �−φ

�L

�L+�R fLσ (ε̃) + �φ
�R

�L+�R fRσ (ε̃). χ = πρW ,

ε̃ = ε − 2χ
√

�̃L�̃R cosφ, �±φ = 1+χ2±2χ sinφ

1+χ2 , and �̃α =
�α

1+χ2 with �α = π |Vα|2ρ. The expression of 〈nc〉 and 〈ns〉
can then be obtained, i.e., 〈nc〉 = fα↑(ε̃)+fα↓(ε̃) and 〈ns〉 =
�−φ

�L

�L+�R [ fL↑(ε̃) − fL↓(ε̃)]+�φ
�R

�L+�R [ fR↑(ε̃) − fR↓(ε̃)].
We really find that the average charge occupation in the
QD is independent of the presence of spin bias. However,
in the case of finite spin bias, the factor �±φ , which is
contributed by the local magnetic flux and direct lead-
lead coupling, can adjust the value of 〈ns〉. Also, the
spin accumulation is an odd function of φ, so that the
magnitude and sign of spin accumulation can be detailedly
adjusted by the change of magnetic flux. Furthermore,
we see that when πρW = ± sinφ = 1, the expressions
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of 〈ndσ 〉 and 〈ns〉 can be simplified. For the example of
πρW = 1 and φ = π

2 , 〈nσ 〉 = 2�R

�L+�R fRσ (ε) = fRσ (ε).
Then, in such a case, the ‘Fermi level’ of the spin-σ elec-
tron is at the point of ε = μRσ , leading to the result that
〈ns〉 = fR↑(ε) − fR↓(ε). Next, when the magnetic flux
is raised to φ = 3π

2 , there will be 〈ndσ 〉 = fLσ (ε) and
〈ns〉 = fL↑(ε) − fL↓(ε). The property of the spin polariza-
tion is completely opposite to the case of φ = π

2 . Based
on such analysis, the spin accumulation in the QD is well
understood.
The underlying physics being responsible for the above

results is quantum interference. It is known that the inter-
ference in the QD ring structure is rather complicated.
However, in such a structure, the quantum interference
that affects the spin accumulation just occurs between
two Feynman paths. This is becauseGr

dα,σ = τ
(1)
dα,σ +τ

(2)
dα,σ ,

where τ
(1)
dL,σ = g̃rdσ

V ∗
Rg

r
RWe−iφgrL and τ

(2)
dL,σ = g̃rdσ

V ∗
L g

r
L

with g̃rdσ
= 1

1+χ2 [ω − ε̃ + i(�̃L + �̃R)]−1. It is evident that
the phase difference between the two paths influences
the magnitude of |Gr

dα,σ |2, hence changing the average
electron occupation number in the QD. Via a simple
calculation, the phase difference can be obtained, i.e.,
�θdL,σ =[ θR − φ] with θα being the argument of grα . Sim-
ilarly, the two transmission paths between lead-R and the
QD can be given by τ

(1)
dR,σ = g̃rdσ

V ∗
L g

r
LWeiφgrR and τ

(2)
dR,σ =

g̃rdσ
V ∗
Rg

r
R with �θdR,σ =[ θL + φ]. So, in the presence of

finite magnetic flux, the amplitude of |Gr
dL,σ |2 is different

from that of |Gr
dR,σ |2. This leads to the different couplings

between the QD and the leads. In the extreme case of
πρW = 1, the magnitudes of τ (1)

dα,σ and τ
(2)
dα,σ are the same.

Then, when φ = π
2 , the destructive quantum interference

between τ
(1)
dL,σ and τ

(2)
dL,σ causes |Gr

dL,σ |2 to be equal to zero,
which leads to the decoupling of the QD from lead-L.
However, the quantum interference between τ

(1)
dR,σ and

τ
(2)
dR,σ is constructive since �θdR,σ = 0 in such a case. So,
the QD only feels lead-R with 〈nσ 〉 = fRσ (ε). Oppositely,
for the case of φ = 3π

2 , only the property of lead-L influ-
ences the electron in the QD. So far, we have noted that
the AB-Fano effect modulates the quantum interference
that contributes to the electron distribution in the QDs.
In the following, we incorporate the electron interaction

into the calculation. In the case of weakQD-lead coupling,
〈nσ 〉 can be expressed in an analytical way, i.e.,

in which Fσ (ω) = �−φ�LfLσ +�φ�RfRσ

�L+�R . Then,

In Figure 2, by assuming W = 0.3 and φ = π
2 , we show

the spin accumulation in the QD in the cases of U = 0.5,
1.0, and 2.0, respectively. As shown in Figure 2a, for the
cases of U ≤ eVs, the energy region where the spin accu-
mulation emerges is directly widened, and in the whole
region of − eVs

2 − U < ε < eVs
2 , the spin polarization

is robust. Thus, the intradot Coulomb interaction bene-
fits the spin accumulation in the QD. Such a result can be
explained in the following way:When φ = π

2 , the QD only
‘couples to’ lead-R in which μR↓ = eVs

2 and μR↑ = − eVs
2 .

Consequently, when the QD level ε is shifted below μR↓,
a spin-down electron will occupy such a level, but at this
time, the level ε + U is unoccupied. Next, when the level
ε + U is below μR↓, the Pauli exclusion principle makes
it empty, so the spin accumulation in the QD is equal to
−1 approximately. Only when the level ε + U decreases
to the position of μR↑ does a spin-up electron have an
opportunity to occupy it, and then, the spin accumulation
disappears. However, with regard to the case of U = 2.0,
we see that with the decrease of ε to −0.5, the magnitude
of spin accumulation goes down deeply, and around the
region of ε = −1.0, the value of 〈ns〉 almost encounters its
zero. However, by a further adjustment of ε0 to ε0 = −1.5,
such a spin accumulation then gets close to 1 again. We
can understand this phenomenon as follows. Since the
strong Coulomb interaction, the levels ε and ε+U will not
be located in the spin bias window simultaneously. Then,
they respectively contribute to the spin accumulation. So,
in the regions of −0.5 < ε < 0.5 and −0.5 < ε +U < 0.5,
there emerges an apparent spin accumulation. However,
when the level is shifted around the point of ε = −1.0, the
level ε+U is aboveμR↓, so it is unoccupied. Then, the level
ε, which is below μR↑, will confine the different-spin elec-
trons with the same ability. So far, we have known the role
of electron interaction in adjusting the spin accumulation
in such a structure.

The double-QD AB interferometer
The AB interferometer with one QD in each of its arm
(see Figure 3a) is another typical structure in study-
ing the electron transport behaviors modified by the
AB phase. For such a structure, both HD and HT have
alternative forms as HD = ∑

jσ εjd†jσdjσ + Ujnj↑nj↓, and
HT = ∑

αkj,σ Vαjc†αkσdjσ + h.c.. d†jσ (djσ ) is the creation
(annihilation) operator of electron in QD-j. εj is the

〈nσ 〉= Fσ (ε̃)−Fσ̄ (ε̃)Fσ (ε̃)+Fσ (ε̃+U)Fσ̄ (ε̃)

1−Fσ̄ (ε̃)Fσ (ε̃)+Fσ̄ (ε̃)Fσ (ε̃+U)+Fσ (ε̃)Fσ̄ (ε̃+U)−Fσ (ε̃+U)Fσ̄ (ε̃+U)
, (6)

〈ns〉 = F↑(ε̃) − F↓(ε̃) + F↑(ε̃ + U)F↓(ε̃) − F↓(ε̃ + U)F↑(ε̃)

1 − Fσ̄ (ε̃)Fσ (ε̃) + Fσ̄ (ε̃)Fσ (ε̃ + U) + Fσ (ε̃)Fσ̄ (ε̃ + U) − Fσ (ε̃ + U)Fσ̄ (ε̃ + U)
. (7)
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Figure 2 The influence of Coulomb interaction on the properties of 〈nσ 〉 (a) and 〈ns〉 (b). The relevant parameters are taken to beW = 0.3,
Vα = 0.1, and φ = π

2 .

corresponding QD level, and Uj denotes the intradot
electron interaction strength. Vαj represents the coupling
between QD-j and lead-α.
Here, we would like to know whether the Fano inter-

ference manner is also necessary to achieve the spin
accumulation of such a structure. If so, how do the

properties of nonresonant channel affect the spin accu-
mulation? Based on such an idea, we begin to analyze
the average electron occupation number of QD-j by the
formula 〈njσ 〉 = − i

2π
∫
dωG<

jj,σ (ω). The lesser Green
function G<(ω) also obeys the relationship in Equation 3,
and the retarded Green function Gr can be expressed as
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Figure 3 The AB interferometer with two QDs. (a) Schematic of an AB interferometer with one QD in each of its arm. (b) The spin accumulation
in QD-2 influenced by the properties of the other arm. (c) The influence of the QD levels on the spin accumulation in QD-2. (d) The spin
accumulation in QD-2 affected by the local magnetic flux. The spin bias is fixed with eVs = 1.0.
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[Gr
σ ]−1 =

⎡
⎢⎢⎢⎢⎣

gr−1
L 0 − VL1 −VL2

0 gr−1
R − VR1 −VR2

− V ∗
L1 −V ∗

R1 gr−1
1σ 0

− V ∗
L2 −V ∗

R2 0 gr−1
2σ

⎤
⎥⎥⎥⎥⎦ , (8)

where grjσ = 1−〈njσ̄ 〉
ω−εj+i0+ + 〈njσ̄ 〉

ω−εj−Uj+i0+ within the Hubbard
approximation. Surely, Equation 5 is still suitable for eval-
uating the electron properties of this system.
Without loss of generality, we take QD-2 as an exam-

ple to investigate the spin accumulation behaviors of such
a structure. In the presence of magnetic flux, the cou-
pling coefficients take the following form: VL1 = V1eiφ/4,
V ∗
R1 = V1eiφ/4, VR2 = V2eiφ/4, and V ∗

L2 = V2eiφ/4. Vj
is the strength of the QD-lead coupling. The numerical
results are shown in Figure 3b,c,d. In Figure 3b, by fixing
φ = π

2 , ε2 = 0, and V2 = 0.1, we plot the spectrum of spin
accumulation in QD-2 vs ε1 and V1. It is obvious that the
increase of V1 can efficiently enhance the spin accumula-
tion in QD-2. This means that in the case of finite spin
bias and magnetic flux, a nonresonant channel is neces-
sary to realize the spin accumulation of such a structure.
So, it is the AB-Fano effect, but not the AB effect, that pro-
motes the spin accumulation. Besides, it shows that the
level of QD-1 plays a nontrivial role in affecting the spin
accumulation. To be precise, when the level of QD-1 is
shifted around the zero energy point, there will be no spin
accumulation in QD-2. When the level of QD-1 departs
from the zero energy, finite spin accumulation emerges
with its maximum approximately at the position where
V1 = 0.45

√|ε1|. The other important result is that the
sign of 〈n2s〉will change when the level ε1 exceeds the zero
energy point. Therefore, in comparison with the one-QD
AB interferometer, we can find that the spin accumulation
of this structure can be manipulated flexibly.
Next, we choose V1 = 0.6 and investigate the spin accu-

mulation in QD-2 influenced by the change of QD levels,
as shown in Figure 3c. We find that similar to the for-
mer structure, the spin accumulation occurs only when
the corresponding QD level is located in the spin bias win-
dow. However, the characteristic of 〈n2s〉 lies where its sign
(+/−) is differentiated by the line of ε1 = ε2, where the
spin accumulation disappears. This result indicates that
if the spin bias is large enough, at the point of ε1 = 0,
the sign of 〈n2s〉 can be altered by the change of ε2. On
the other hand, in Figure 3d, we investigate 〈n2s〉 as func-
tions of φ and ε2. The QD-lead couplings are taken to
V1 = 5V2 = 0.5, and the level of QD-1 is fixed at ε1 = 1.
It is seen that the reversal of the magnetic flux direction
can change the sign of spin accumulation, but in such a
structure, the level of QD-2 tends to affect the maximum
of spin accumulation, which appears around the points of
ε2 = 0.25 and φ = ±0.3π . Thereby, we notice that the
properties of the resonant channel, e.g., the level of QD-2,

are also important factors to change the magnitude of the
spin accumulation.
For such a structure, it is difficult for us to write out the

analytical expression of 〈n2s〉. So, we can only present a
qualitative discussion to explain the above results by ana-
lyzing the quantum interference that contributes to the
spin accumulation. Obviously, the expression ofGr

2α,σ can
be written as the summation of two Feynman paths, i.e.,
Gr
2α,σ = τ

(1)
2α,σ +τ

(2)
2α,σ . Then, the quantum interference fea-

ture determines the coupling strength between QD-2 and
the leads. However, it is found that

τ
(1)
2L,σ =

∞∑
j=1

i(−g̃r2σ �21g̃r1σ )j�
j−1
12 Ṽ1L,

τ
(2)
2L,σ =

∞∑
j=0

g̃r2σ (−g̃r2σ g̃
r
1σ �12�21)

jṼ2L, (9)

where Ṽjα = Ṽ ∗
αj = V ∗

αj
√

πρ and g̃rjσ =[ω − εj + i�jj]−1

with �jl = ∑
α πVαjV ∗

αlρ. So, the coupling between QD-
2 and lead-L is determined by the quantum interference
among infinite-order Feynman paths, different from that
in the one-QD structure. This inevitably leads to the com-
plicated features of the spin accumulation. Similarly, the
three transmission paths between lead-R andQD-2 can be
given by

τ
(1)
2R,σ =

∞∑
j=1

i(−g̃r2σ �21g̃r1σ )j�
j−1
12 Ṽ1R,

τ
(2)
1R,σ =

∞∑
j=0

g̃r2σ (−g̃r2σ g̃
r
1σ �12�21)

jṼ2R. (10)

Despite the complicated quantum interferences among
infinite paths, we try to clarify the quantum interfer-
ence feature by calculating the phase differences between
the lowest-order paths. This is because the quantum
interference among lowest-order paths contributes mainly
to the coupling between QD-2 and the leads. For
instance, the three lowest-order paths between QD-2
and lead-L are τ

(1,a)
2L,σ = −ig̃r2σ Ṽ2LṼL1g̃r1σ Ṽ1L, τ

(1,b)
2L,σ =

−ig̃r2σ Ṽ2RṼR1g̃r1σ Ṽ1L, and τ
(2,0)
2L,σ = g̃r2σ Ṽ2L, and the phase

differences are �θ
(a,b)
2L,σ = φ, �θ

(a,0)
2L,σ = θ1 + φ

2 − π
2 , and

�θ
(b,0)
2L,σ = θ1 − π

2 , respectively, with θj being the argument
of g̃rjσ . By a same token, we have the results that τ

(1,a)
2R,σ =

−ig̃r2σ Ṽ2LṼL1g̃r1σ Ṽ1R, τ
(1,b)
2R,σ = −ig̃r2σ Ṽ2RṼR1g̃r1σ Ṽ1R, and

τ
(2,0)
2R,σ = g̃r2σ Ṽ2R; and�θ

(a,b)
2R,σ = φ,�θ

(a,0)
2R,σ = θ1+φ

2+π
2 , and

�θ
(b,0)
2R,σ = θ1 + π

2 . For a typical case of ω = 0, ε1 = 1, and
φ = π

2 , we get the result that �θ
(a,b)
2L,σ = π

2 , �θ
(a,0)
2L,σ = π ,

and �θ
(b,0)
2L,σ = 3π

4 . So, the destructive quantum interfer-
ence among these paths leads to the decoupling of QD-2
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from lead-L. In such a case, however, the quantum inter-
ference among τ

(1,a)
2R,σ , τ

(2,b)
2R,σ , and τ

(0)
2R,σ is constructive since

�θ
(a,b)
2R,σ = π

2 , �θ
(a,0)
2R,σ = 0, and �θ

(b,0)
2R,σ = π

4 . Thus, the spin
bias of lead-R determines the spin accumulation in QD-2.
Surely, θ1 is dependent on ω, but one should understand
that the quantum interference of ω = 0 makes the main
contribution to the spin accumulation. So, the accumu-
lation of this structure. Meanwhile, note that only when
the arm of QD-1 offers a nonresonant channel are the
magnitudes of the paths close to one another, so that the
quantum interference effect is clear.
Next, we demonstrate the effect of ε2 on the value

of 〈n2s〉. In Equations 9 to 10, one can find that in the
higher-order paths, the two arms of the interferometer are
visited repeatedly. Then, the properties of the two arms
play an important role in affecting the quantum interfer-
ence. In the study by Gong et al. [63], our calculations
showed that when the levels of the two QDs are the same,
the quantum interference between the two arms become
weak, but only the nonresonant one determines the elec-
tron properties of this structure. As a consequence, in

such a case, the interferometer can be considered as a
single-channel structure, and then, the picture of quantum
interference disappears. With this viewpoint, we under-
stand the vanishment of the spin accumulation in the case
of ε1 = ε2.
In Figure 4, by choosing V1 = 0.5,V2 = 0.1, and φ = π

2 ,
we investigate the influence of the intradot Coulomb
interactions on the spin accumulation in QD-2. From
Figure 4a,b,c, we clearly find that the many-body effect in
QD-2 (i.e., the resonant-channel QD) on the spin accu-
mulation is similar to that in the single-QD AB interfer-
ometer. Namely, in the case of U2 ≤ eVs, e.g., U2 = 1.0,
the energy region where the spin accumulation emerges
is directly widened. As a result, the spin polarization is
always robust in the whole region of− eVs

2 −U2 < ε < eVs
2 .

In the case of strong Coulomb interaction, e.g., U2 = 3.0
in Figure 4c, the spectrum of 〈n2s〉 vs ε2 is divided into
two groups, which are analogous to each other. This result
is easy to understand in terms of the analysis about the
many-body effect in the above subsection. Alternatively, in
Figure 4a,b,c we see that the Coulomb interaction with the
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Figure 4 The influence of Coulomb interactions on the spectra of 〈n2s〉. The relevant parameters are taken to be V1 = 0.5, V2 = 0.1, and
φ = π

2 . (a) The spectrum of 〈n2s〉 vs ε1 and ε2. The Coulomb interactions are taken to be U1 = U2 = 1.0. (b) The spectrum of 〈n2s〉 with U1 = 3.0
and U2 = 1.0. (c) The curve of 〈n2s〉 vs ε2 with U1 = U2 = 3.0. The level of QD-1 is taken to be ε1 = 0 and ±0.5, respectively.
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nonresonant channel plays a more significant role in mod-
ifying the spin accumulation. First, a nonzero U1 causes
the energy region where the positive spin accumulation
appears to shift to the low-energy direction, and only
when varying ε1 to ε1 + U1 ≤ 0 can one see the positive
spin accumulation. Secondly, with the further increase of
U1, in the middle-energy region where ε1 < 0 < ε1 + U1,
finite spin accumulation in QD-2 is also observed. For
instance, for the case of U1 = 3.0, positive 〈n2s〉 comes
up around the point of ε1 = −0.5, whereas the negative
〈n2s〉 occurs in the vicinity of ε1 = −2.5. We explain this
result as follows. A finite U1 will lead to ε1 splitting into
ε1 and ε1 + U1. Accordingly, two nonresonant channels
contribute to the quantum interference. When U1 = 1.0,
the two nonresonant channels have the opportunity to
simultaneously act on the quantum interference. In the
case of −1.0 < ε1 < 0.0, the sign of ε1 + U1 is greater
than zero. Then, the electron waves in the two channels
are phase-opposite, which significantly weakens the quan-
tum interference and suppresses the spin accumulation
in QD-2. However, for a strong Coulomb interaction in
QD-1, when ε1 is tuned below the zero energy point, the
level ε1 + U1 is still much greater than zero. Then in
such a case, the Coulomb-induced level contributes little
to the quantum interference, and a single-electron inter-
ference picture remains. Due to this reason, we find the
positive spin accumulation in QD-2 when ε1 = −0.5 in
Figure 4b,c. On the contrary, when ε1 = −2.5, ε1 + U1 =
0.5. Then, the coupling between ε1 + U1 and the leads
provides a channel for the quantum interference, leading
to the appearance of negative spin accumulation in QD-2.
The further decrease of ε1 will cause ε1+U1 to be less than
zero. Compared with the result of ε1 = −2.5, the change
of the sign of ε1 + U1 brings about the positive 〈n2s〉. In
addition, note that when ε1 = −U1

2 , one can obtain the
result of ε1 = −ε1 + U1. Then, the opposite-phase elec-
tron waves in the two nonresonant channels contribute
zero to the quantum interference, so in such a case, no
spin accumulation occurs in QD-2.

Summary
In summary, we have studied the spin accumulation char-
acteristics of two AB interferometers with QDs embedded
in their arms by considering spin bias in the leads. It
has been found that regardless of the configurations of
the interferometers, the spin accumulations are strongly
dependent on the quantum interference features of the
interferometers. Namely, the nonresonant transmission
ability between the leads and the local magnetic flux can
efficiently adjust the spin accumulation properties of the
QD. By analyzing the quantum interferences among the
Feynman paths, it was seen that the quantum interfer-
ences can cause the QD in the resonant channel to be
decoupled from one of the leads. Accordingly, the spin

bias in one lead will drive the spin accumulation in such
a QD. So, it is certain that the AB-Fano effect assists
to manipulate the spin accumulation. Further analysis
showed that the double-QD interferometer has advan-
tages in manipulating the spin states in the resonant
channel. In view of the obtained results, we propose the
AB interferometers with QDs to be alternative candidates
for spin manipulation in QD devices.
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