72 research outputs found

    The Achilles Heel of the Trojan Horse Model of HIV-1 trans-Infection

    Get PDF
    To ensure their survival, microbial pathogens have evolved diverse strategies to subvert host immune defenses. The human retrovirus HIV-1 has been proposed to hijack the natural endocytic function of dendritic cells (DCs) to infect interacting CD4 T cells in a process termed trans-infection. Although DCs can be directly infected by certain strains of HIV-1, productive infection of DCs is not required during trans-infection; instead, DCs capture and internalize infectious HIV-1 virions in vesicles for later transmission to CD4 T cells via vesicular exocytosis across the infectious synapse. This model of sequential endocytosis and exocytosis of intact HIV-1 virions has been dubbed the β€œTrojan horse” model of HIV-1 trans-infection. While this model gained rapid favor as a strong example of how a pathogen exploits the natural properties of its cellular host, our recent studies challenge this model by showing that the vast majority of virions transmitted in trans originate from the plasma membrane rather than from intracellular vesicles. This review traces the experimental lines of evidence that have contributed to what we view as the β€œrise and decline” of the Trojan horse model of HIV-1 trans-infection

    HIV and Mature Dendritic Cells: Trojan Exosomes Riding the Trojan Horse?

    Get PDF
    Exosomes are secreted cellular vesicles that can induce specific CD4+ T cell responses in vivo when they interact with competent antigen-presenting cells like mature dendritic cells (mDCs). The Trojan exosome hypothesis proposes that retroviruses can take advantage of the cell-encoded intercellular vesicle traffic and exosome exchange pathway, moving between cells in the absence of fusion events in search of adequate target cells. Here, we discuss recent data supporting this hypothesis, which further explains how DCs can capture and internalize retroviruses like HIV-1 in the absence of fusion events, leading to the productive infection of interacting CD4+ T cells and contributing to viral spread through a mechanism known as trans-infection. We suggest that HIV-1 can exploit an exosome antigen-dissemination pathway intrinsic to mDCs, allowing viral internalization and final trans-infection of CD4+ T cells. In contrast to previous reports that focus on the ability of immature DCs to capture HIV in the mucosa, this review emphasizes the outstanding role that mature DCs could have promoting trans-infection in the lymph node, underscoring a new potential viral dissemination pathway

    Cholesterol Homeostasis in Two Commonly Used Human Prostate Cancer Cell-Lines, LNCaP and PC-3

    Get PDF
    BACKGROUND:Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2). This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth. METHODOLOGY/PRINCIPAL FINDINGS:After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis). In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels. CONCLUSION/SIGNIFICANCE:Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo

    The Golgin GMAP210/TRIP11 Anchors IFT20 to the Golgi Complex

    Get PDF
    Eukaryotic cells often use proteins localized to the ciliary membrane to monitor the extracellular environment. The mechanism by which proteins are sorted, specifically to this subdomain of the plasma membrane, is almost completely unknown. Previously, we showed that the IFT20 subunit of the intraflagellar transport particle is localized to the Golgi complex, in addition to the cilium and centrosome, and hypothesized that the Golgi pool of IFT20 plays a role in sorting proteins to the ciliary membrane. Here, we show that IFT20 is anchored to the Golgi complex by the golgin protein GMAP210/Trip11. Mice lacking GMAP210 die at birth with a pleiotropic phenotype that includes growth restriction, ventricular septal defects of the heart, omphalocele, and lung hypoplasia. Cells lacking GMAP210 have normal Golgi structure, but IFT20 is no longer localized to this organelle. GMAP210 is not absolutely required for ciliary assembly, but cilia on GMAP210 mutant cells are shorter than normal and have reduced amounts of the membrane protein polycystin-2 localized to them. This work suggests that GMAP210 and IFT20 function together at the Golgi in the sorting or transport of proteins destined for the ciliary membrane

    Uterine Epithelial Cell Regulation of DC-SIGN Expression Inhibits Transmitted/Founder HIV-1 Trans Infection by Immature Dendritic Cells

    Get PDF
    Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1.Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-Ξ²) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- Ξ²1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-Ξ²1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection.Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1

    Variability of the chronic obstructive pulmonary disease key epidemiological data in Europe: systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic obstructive pulmonary disease (COPD) is predicted to become a major cause of death worldwide. Studies on the variability in the estimates of key epidemiological parameters of COPD may contribute to better assessment of the burden of this disease and to helpful guidance for future research and public policies. In the present study, we examined differences in the main epidemiological characteristics of COPD derived from studies across countries of the European Union, focusing on prevalence, severity, frequency of exacerbations and mortality, as well as on differences between the studies' methods.</p> <p>Methods</p> <p>This systematic review was based on a search for the relevant literature in the Science Citation Index database via the Web of Science and on COPD mortality rates issued from national statistics. Analysis was finally based on 65 articles and Eurostat COPD mortality data for 21 European countries.</p> <p>Results</p> <p>Epidemiological characteristics of COPD varied widely from country to country. For example, prevalence estimates ranged between 2.1% and 26.1%, depending on the country, the age group and the methods used. Likewise, COPD mortality rates ranged from 7.2 to 36.1 per 10<sup>5 </sup>inhabitants. The methods used to estimate these epidemiological parameters were highly variable in terms of the definition of COPD, severity scales, methods of investigation and target populations. Nevertheless, to a large extent, several recent international guidelines or research initiatives, such as GOLD, BOLD or PLATINO, have boosted a substantial standardization of methodology in data collection and have resulted in the availability of more comparable epidemiological estimates across countries. On the basis of such standardization, severity estimates as well as prevalence estimates present much less variation across countries. The contribution of these recent guidelines and initiatives is outlined, as are the problems remaining in arriving at more accurate COPD epidemiological estimates across European countries.</p> <p>Conclusions</p> <p>The accuracy of COPD epidemiological parameters is important for guiding decision making with regard to preventive measures, interventions and patient management in various health care systems. Therefore, the recent initiatives for standardizing data collection should be enhanced to result in COPD epidemiological estimates of improved quality. Moreover, establishing international guidelines for reporting research on COPD may also constitute a major contribution.</p

    Setting the stage: host invasion by HIV.

    Get PDF
    For more than two decades, HIV has infected millions of people worldwide each year through mucosal transmission. Our knowledge of how HIV secures a foothold at both the molecular and cellular levels has been expanded by recent investigations that have applied new technologies and used improved techniques to isolate ex vivo human tissue and generate in vitro cellular models, as well as more relevant in vivo animal challenge systems. Here, we review the current concepts of the immediate events that follow viral exposure at genital mucosal sites where most documented transmissions occur. Furthermore, we discuss the gaps in our knowledge that are relevant to future studies, which will shape strategies for effective HIV prevention

    HIV/SIV Infection Primes Monocytes and Dendritic Cells for Apoptosis

    Get PDF
    Subversion or exacerbation of antigen-presenting cells (APC) death modulates host/pathogen equilibrium. We demonstrated during in vitro differentiation of monocyte-derived macrophages and monocyte-derived dendritic cells (DCs) that HIV sensitizes the cells to undergo apoptosis in response to TRAIL and FasL, respectively. In addition, we found that HIV-1 increased the levels of pro-apoptotic Bax and Bak molecules and decreased the levels of anti-apoptotic Mcl-1 and FLIP proteins. To assess the relevance of these observations in the context of an experimental model of HIV infection, we investigated the death of APC during pathogenic SIV-infection in rhesus macaques (RMs). We demonstrated increased apoptosis, during the acute phase, of both peripheral blood DCs and monocytes (CD14+) from SIV+RMs, associated with a dysregulation in the balance of pro- and anti-apoptotic molecules. Caspase-inhibitor and death receptors antagonists prevented apoptosis of APCs from SIV+RMs. Furthermore, increased levels of FasL in the sera of pathogenic SIV+RMs were detected, compared to non-pathogenic SIV infection of African green monkey. We suggest that inappropriate apoptosis of antigen-presenting cells may contribute to dysregulation of cellular immunity early in the process of HIV/SIV infection

    Cell-Cell Transmission Enables HIV-1 to Evade Inhibition by Potent CD4bs Directed Antibodies

    Get PDF
    HIV is known to spread efficiently both in a cell-free state and from cell to cell, however the relative importance of the cell-cell transmission mode in natural infection has not yet been resolved. Likewise to what extent cell-cell transmission is vulnerable to inhibition by neutralizing antibodies and entry inhibitors remains to be determined. Here we report on neutralizing antibody activity during cell-cell transmission using specifically tailored experimental strategies which enable unambiguous discrimination between the two transmission routes. We demonstrate that the activity of neutralizing monoclonal antibodies (mAbs) and entry inhibitors during cell-cell transmission varies depending on their mode of action. While gp41 directed agents remain active, CD4 binding site (CD4bs) directed inhibitors, including the potent neutralizing mAb VRC01, dramatically lose potency during cell-cell transmission. This implies that CD4bs mAbs act preferentially through blocking free virus transmission, while still allowing HIV to spread through cell-cell contacts. Thus providing a plausible explanation for how HIV maintains infectivity and rapidly escapes potent and broadly active CD4bs directed antibody responses in vivo
    • …
    corecore