140 research outputs found

    Breastfeeding and the risk of rotavirus diarrhea in hospitalized infants in Uganda: a matched case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rotavirus </it>is responsible for over 25 million outpatient visits, over 2 million hospitalizations and 527,000 deaths annually, worldwide. It is estimated that breastfeeding in accordance with the World Health Organization recommendations would save 1.45 million children's lives each year in the developing countries. The few studies that examined the effect of breastfeeding on <it>rotavirus </it>diarrhea produced conflicting results. This study aimed to determine the effect of breastfeeding on <it>rotavirus </it>diarrhea among admitted infants in Uganda.</p> <p>Methods</p> <p>The study was conducted in the Pediatrics medical emergency unit of a National Referral hospital during a peak incidence time for rotavirus from February to April 2008. It was an age matched case-control study with a ratio of 1:1. We consecutively enrolled infants presenting at the study site during this period whose caretakers consented to participate in the study. A minimum sample size of 90 pairs was adequate with power of 80% to detect a 30% decrease in breastfeeding rate among the cases assuming a breastfeeding rate of 80% in the controls. The infants with <it>rotavirus </it>positive results were the "cases". We used the commercial enzyme immunoassay kit (DAKO IDEIA™ rotavirus EIA detection kit) to diagnose the cases. The "controls" were admitted children with no diarrhea. We compared the cases and controls for antecedent breastfeeding patterns.</p> <p>Results</p> <p>Ninety-one matched case-control age-matched pairs with an age caliper of one month were included in the analysis. Breastfeeding was not protective against rotavirus diarrhea (OR 1.08: 95% CI 0.52 - 2.25; p = 0.8) in the conditional logistic model.</p> <p>Conclusions</p> <p>Our study findings did not reveal breastfeeding as protective against <it>rotavirus </it>diarrhea in infants. This suggests searching for other complementary preventive methods such as rotavirus vaccination and zinc supplementation to reduce the problem of <it>rotavirus </it>diarrhea in infants irrespective of their feeding practices.</p

    Hypoadiponectinemia in Extremely Low Gestational Age Newborns with Severe Hyperglycemia – A Matched-Paired Analysis

    Get PDF
    BACKGROUND: Hyperglycemia is commonly observed in extremely low gestational age newborns (ELGANs) and is associated with both increased morbidity and mortality. The objective of this study was to examine the relationship between neonatal hyperglycemia and adiponectin levels in ELGANs. METHODOLOGY/PRINCIPAL FINDINGS: Ten preterm infants between 22+6/7 and 27+3/7 weeks' gestation with neonatal hyperglycemia (defined as pre-feeding blood glucose levels above 200mg/dl on two consecutive measurements with a maximum parenteral glucose infusion of 4 mg/kg*min(-1)) formed the case cohort of this study. To every single patient of this case cohort a patient with normal fasting ( = pre-feeding) blood glucose levels was matched in terms of gestational age and gender. Adiponectin ELISAs were performed both at onset of hyperglycemia and at term-equivalent age. In the case cohort 9/10 patients had to be treated with insulin for 1-26 days (range 0.01-0.4 IU/kg*h(-1)). Compared to matched-paired controls, significant hypoadiponectinemia was observed at onset of hyperglycemia in these affected patients (6.9 µg/ml versus 15.1 µg/ml, p = 0.009). At term equivalent age, normoglycemia without any insulin treatment was found in both groups. Moreover, adiponectin levels at that time were no longer significantly different (12.3 µg/ml versus 20.0 µg/ml; p = 0.051) possibly indicating a mechanistic relevance of this adipokine in regulating insulin sensitivity in ELGANs. CONCLUSIONS/SIGNIFICANCE: Decreased circulating adiponectin levels are correlated with hyperglycemia in ELGANs and may contribute to the pathogenesis of impaired glucose homeostasis in these infants. These findings suggest that adiponectin might be a potential future drug target for the potentially save treatment of hyperglycemia in pre-term infants

    Patterns of Early Gut Colonization Shape Future Immune Responses of the Host

    Get PDF
    The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system

    Individuals with Le(a+b−) Blood Group Have Increased Susceptibility to Symptomatic Vibrio cholerae O1 Infection

    Get PDF
    Cholera remains a severe diarrheal disease, capable of causing extensive outbreaks and high mortality. Blood group is one of the genetic factors determining predisposition to disease, including infectious diseases. Expression of different Lewis or ABO blood group types has been shown to be associated with risk of different enteric infections. For example, individuals of blood group O have a higher risk of severe illness due to V. cholerae compared to those with non-blood group O antigens. In this study, we have determined the relationship of the Lewis blood group antigen phenotypes with the risk of symptomatic cholera as well as the severity of disease and immune responses following infection. We show that individuals expressing the Le(a+b−) phenotype were more susceptible to symptomatic cholera, while Le(a–b+) expressing individuals were less susceptible. Individuals with the Le(a–b−) blood group had a longer duration of diarrhea when infected, required more intravenous fluid replacement, and had lower plasma IgA antibody responses to V. cholerae LPS on day 7 following infection. We conclude that there is an association between the Lewis blood group and the risk of cholera, and that this risk may affect the outcome of infection as well as possibly the efficacy of vaccination

    Binding of Human Milk to Pathogen Receptor DC-SIGN Varies with Bile Salt-Stimulated Lipase (BSSL) Gene Polymorphism

    Get PDF
    OBJECTIVE: Dendritic cells bind an array of antigens and DC-SIGN has been postulated to act as a receptor for mucosal pathogen transmission. Bile salt-stimulated lipase (BSSL) from human milk potently binds DC-SIGN and blocks DC-SIGN mediated trans-infection of CD4(+) T-lymphocytes with HIV-1. Objective was to study variation in DC-SIGN binding properties and the relation between DC-SIGN binding capacity of milk and BSSL gene polymorphisms. STUDY DESIGN: ELISA and PCR were used to study DC-SIGN binding properties and BSSL exon 11 size variation for human milk derived from 269 different mothers distributed over 4 geographical regions. RESULTS: DC-SIGN binding properties were highly variable for milks derived from different mothers and between samplings from different geographical regions. Differences in DC-SIGN binding were correlated with a genetic polymorphism in BSSL which is related to the number of 11 amino acid repeats at the C-terminus of the protein. CONCLUSION: The observed variation in DC-SIGN binding properties among milk samples may have implications for the risk of mucosal transmission of pathogens during breastfeeding

    Lysozyme transgenic goats’ milk positively impacts intestinal cytokine expression and morphology

    Get PDF
    In addition to its well-recognized antimicrobial properties, lysozyme can also modulate the inflammatory response. This ability may be particularly important in the gastrointestinal tract where inappropriate inflammatory reactions can damage the intestinal epithelium, leading to significant health problems. The consumption of milk from transgenic goats producing human lysozyme (hLZ) in their milk therefore has the potential to positively impact intestinal health. In order to investigate the effect of hLZ-containing milk on the inflammatory response, young pigs were fed pasteurized milk from hLZ or non-transgenic control goats and quantitative real-time PCR was performed to assess local expression of TNF-α, IL-8, and TGF-β1 in the small intestine. Histological changes were also investigated, specifically looking at villi width, length, crypt depth, and lamina propria thickness along with cell counts for intraepithelial lymphocytes and goblet cells. Significantly higher expression of anti-inflammatory cytokine TGF-β1 was seen in the ileum of pigs fed pasteurized milk containing hLZ (P = 0.0478), along with an increase in intraepithelial lymphocytes (P = 0.0255), and decrease in lamina propria thickness in the duodenum (P = 0.0001). Based on these results we conclude that consuming pasteurized milk containing hLZ does not induce an inflammatory response and improves the health of the small intestine in pigs

    Transcriptome Profiling of Bovine Milk Oligosaccharide Metabolism Genes Using RNA-Sequencing

    Get PDF
    This study examines the genes coding for enzymes involved in bovine milk oligosaccharide metabolism by comparing the oligosaccharide profiles with the expressions of glycosylation-related genes. Fresh milk samples (n = 32) were collected from four Holstein and Jersey cows at days 1, 15, 90 and 250 of lactation and free milk oligosaccharide profiles were analyzed. RNA was extracted from milk somatic cells at days 15 and 250 of lactation (n = 12) and gene expression analysis was conducted by RNA-Sequencing. A list was created of 121 glycosylation-related genes involved in oligosaccharide metabolism pathways in bovine by analyzing the oligosaccharide profiles and performing an extensive literature search. No significant differences were observed in either oligosaccharide profiles or expressions of glycosylation-related genes between Holstein and Jersey cows. The highest concentrations of free oligosaccharides were observed in the colostrum samples and a sharp decrease was observed in the concentration of free oligosaccharides on day 15, followed by progressive decrease on days 90 and 250. Ninety-two glycosylation-related genes were expressed in milk somatic cells. Most of these genes exhibited higher expression in day 250 samples indicating increases in net glycosylation-related metabolism in spite of decreases in free milk oligosaccharides in late lactation milk. Even though fucosylated free oligosaccharides were not identified, gene expression indicated the likely presence of fucosylated oligosaccharides in bovine milk. Fucosidase genes were expressed in milk and a possible explanation for not detecting fucosylated free oligosaccharides is the degradation of large fucosylated free oligosaccharides by the fucosidases. Detailed characterization of enzymes encoded by the 92 glycosylation-related genes identified in this study will provide the basic knowledge for metabolic network analysis of oligosaccharides in mammalian milk. These candidate genes will guide the design of a targeted breeding strategy to optimize the content of beneficial oligosaccharides in bovine milk

    Influence of Milk-Feeding Type and Genetic Risk of Developing Coeliac Disease on Intestinal Microbiota of Infants: The PROFICEL Study

    Get PDF
    Interactions between environmental factors and predisposing genes could be involved in the development of coeliac disease (CD). This study has assessed whether milk-feeding type and HLA-genotype influence the intestinal microbiota composition of infants with a family history of CD. The study included 164 healthy newborns, with at least one first-degree relative with CD, classified according to their HLA-DQ genotype by PCR-SSP DQB1 and DQA1 typing. Faecal microbiota was analysed by quantitative PCR at 7 days, and at 1 and 4 months of age. Significant interactions between milk-feeding type and HLA-DQ genotype on bacterial numbers were not detected by applying a linear mixed-model analysis for repeated measures. In the whole population, breast-feeding promoted colonization of C. leptum group, B. longum and B. breve, while formula-feeding promoted that of Bacteroides fragilis group, C. coccoides-E. rectale group, E. coli and B. lactis. Moreover, increased numbers of B. fragilis group and Staphylococcus spp., and reduced numbers of Bifidobacterium spp. and B. longum were detected in infants with increased genetic risk of developing CD. Analyses within subgroups of either breast-fed or formula-fed infants indicated that in both cases increased risk of CD was associated with lower numbers of B. longum and/or Bifidobacterium spp. In addition, in breast-fed infants the increased genetic risk of developing CD was associated with increased C. leptum group numbers, while in formula-fed infants it was associated with increased Staphylococcus and B. fragilis group numbers. Overall, milk-feeding type in conjunction with HLA-DQ genotype play a role in establishing infants' gut microbiota; moreover, breast-feeding reduced the genotype-related differences in microbiota composition, which could partly explain the protective role attributed to breast milk in this disorder
    corecore