82 research outputs found

    Sensory Electrical Stimulation Improves Foot Placement during Targeted Stepping Post-Stroke

    Get PDF
    Proper foot placement is vital for maintaining balance during walking, requiring the integration of multiple sensory signals with motor commands. Disruption of brain structures post-stroke likely alters the processing of sensory information by motor centers, interfering with precision control of foot placement and walking function for stroke survivors. In this study, we examined whether somatosensory stimulation, which improves functional movements of the paretic hand, could be used to improve foot placement of the paretic limb. Foot placement was evaluated before, during, and after application of somatosensory electrical stimulation to the paretic foot during a targeted stepping task. Starting from standing, twelve chronic stroke participants initiated movement with the non-paretic limb and stepped to one of five target locations projected onto the floor with distances normalized to the paretic stride length. Targeting error and lower extremity kinematics were used to assess changes in foot placement and limb control due to somatosensory stimulation. Significant reductions in placement error in the medial–lateral direction (p = 0.008) were observed during the stimulation and post-stimulation blocks. Seven participants, presenting with a hip circumduction walking pattern, had reductions (p = 0.008) in the magnitude and duration of hip abduction during swing with somatosensory stimulation. Reductions in circumduction correlated with both functional and clinical measures, with larger improvements observed in participants with greater impairment. The results of this study suggest that somatosensory stimulation of the paretic foot applied during movement can improve the precision control of foot placement

    Isokinetic muscle function comparison of lower limbs among elderly fallers and non-fallers

    Get PDF
    O objetivo deste estudo foi identificar se há diferenças entre o desempenho muscular de tornozelo, joelho e quadril em idosos com e sem relato de queda nos últimos seis meses. Foram incluídos 81 idosos com 65 anos ou mais: 56 negaram quedas (G1) e 25 relataram quedas (G2). Utilizou-se o questionário perfil de atividade humana para medir o nível de atividade física, e o dinamômetro isocinético para mensurar os parâmetros físicos da função muscular. Os grupos não diferiram entre si em relação à idade (p=0,925), duração (p=0,065) e frequência (p=0,302) da prática do exercício físico, índice de massa corpórea (p=0,995) e nível de atividade física (p=0,561). O G2 apresentou menor desempenho para as variáveis pico de torque de flexão e extensão de joelho esquerdo (p=0,027 e p=0,030, respectivamente) e trabalho por peso corporal (p=0,040) de flexão de joelho esquerdo a 60°/s; pico de torque e trabalho por peso corporal de flexão e extensão de joelho a 180°/s bilateralmente (p<0,050); e potência média de flexão de joelhos direito e esquerdo (p=0,030). A maioria das variáveis do tornozelo e quadril não apresentou diferenças entre os grupos. Apenas a variável pico de torque de extensão de quadril esquerdo foi significativamente maior no G1 (p=0,035). É importante considerar a função muscular do joelho na avaliação clínica de idosos para direcionar a intervenção terapêutica e a prevenção de quedas.The aim of this study was to identify whether there are differences between the performance of muscular groups of ankle, knee and hip among elderly people who didn't have falls and individuals who reported falls in the last six months. The study included 81 elderly aged 65 or older: 56 non-faller subjects (G1) and 25 faaller subjects (G2). To obtain the level of physical activity, the questionnaire Human Activity Profile was used, and the muscle function of the lower limbs was assessed using isokinetic dynamometer. The groups did not differ regarding age (p=0.925), duration (p=0.065) and frequency (p=0.302) of the practice of physical exercise, body mass index (BMI) (p=0.995) and level of physical activity (p=0.561). The G2 showed a lower performance of peak torque of left knee flexion and extension (p=0.027 and p=0.030, respectively) and work proportional to body weight (p=0.040) of left knee flexion at 60°/s; peak torque and work proportional to body weight of bilaterally knee flexion and extension at 180°/s (p<0.05) and average power of right and left knee extension (p=0.03). Most variables of ankle and hip joints did not differ between groups. Only peak torque of left hip extension was significantly higher in the non-faller group (p=0.035). It is important to consider knee muscle function in the clinical evaluation of elderly in order to make the intervention more assertive and thus to prevent falls

    When Is Visual Information Used to Control Locomotion When Descending a Kerb?

    Get PDF
    YesBackground: Descending kerbs during locomotion involves the regulation of appropriate foot placement before the kerb-edge and foot clearance over it. It also involves the modulation of gait output to ensure the body-mass is safely and smoothly lowered to the new level. Previous research has shown that vision is used in such adaptive gait tasks for feedforward planning, with vision from the lower visual field (lvf) used for online updating. The present study determined when lvf information is used to control/update locomotion when stepping from a kerb. Methodology/Principal Findings: 12 young adults stepped down a kerb during ongoing gait. Force sensitive resistors (attached to participants' feet) interfaced with an high-speed PDLC 'smart glass' sheet, allowed the lvf to be unpredictably occluded at either heel-contact of the penultimate or final step before the kerb-edge up to contact with the lower level. Analysis focussed on determining changes in foot placement distance before the kerb-edge, clearance over it, and in kinematic measures of the step down. Lvf occlusion from the instant of final step contact had no significant effect on any dependant variable (p>0.09). Occlusion of the lvf from the instant of penultimate step contact had a significant effect on foot clearance and on several kinematic measures, with findings consistent with participants becoming uncertain regarding relative horizontal location of the kerb-edge. Conclusion/Significance: These findings suggest concurrent feedback of the lower limb, kerb-edge, and/or floor area immediately in front/below the kerb is not used when stepping from a kerb during ongoing gait. Instead heel-clearance and pre-landing-kinematic parameters are determined/planned using lvf information acquired in the penultimate step during the approach to the kerb-edge, with information related to foot placement before the kerb-edge being the most salient

    Mind your step: the effects of mobile phone use on gaze behavior in stair climbing

    Get PDF
    Stair walking is a hazardous activity and a common cause of fatal and non-fatal falls. Previous studies have assessed the role of eye movements in stair walking by asking people to repeatedly go up and down stairs in quiet and controlled conditions, while the role of peripheral vision was examined by giving participants specific fixation instructions or working memory tasks. We here extend this research to stair walking in a natural environment with other people present on the stairs and a now common secondary task: Using one's mobile phone. Results show that using the mobile phone strongly draws one's attention away from the stairs, but that the distribution of gaze locations away from the phone is little influenced by using one's phone. Phone use also increased the time needed to walk the stairs, but handrail use remained low. These results indicate that limited foveal vision suffices for adequate stair walking in normal environments, but that mobile phone use has a strong influence on attention, which may pose problems when unexpected obstacles are encountered

    A perturbation-based balance training program for older adults: study protocol for a randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous research investigating exercise as a means of falls prevention in older adults has shown mixed results. Lack of specificity of the intervention may be an important factor contributing to negative results. Change-in-support (CIS) balance reactions, which involve very rapid stepping or grasping movements of the limbs, play a critical role in preventing falls; hence, a training program that improves ability to execute effective CIS reactions could potentially have a profound effect in reducing risk of falling. This paper describes: 1) the development of a perturbation-based balance training program that targets specific previously-reported age-related impairments in CIS reactions, and 2) a study protocol to evaluate the efficacy of this new training program.</p> <p>Methods/Design</p> <p>The training program involves use of unpredictable, multi-directional moving-platform perturbations to evoke stepping and grasping reactions. Perturbation magnitude is gradually increased over the course of the 6-week program, and concurrent cognitive and movement tasks are included during later sessions. The program was developed in accordance with well-established principles of motor learning, such as individualisation, specificity, overload, adaptation-progression and variability. Specific goals are to reduce the frequency of multiple-step responses, reduce the frequency of collisions between the stepping foot and stance leg, and increase the speed of grasping reactions. A randomised control trial will be performed to evaluate the efficacy of the training program. A total of 30 community-dwelling older adults (age 64–80) with a recent history of instability or falling will be assigned to either the perturbation-based training or a control group (flexibility/relaxation training), using a stratified randomisation that controls for gender, age and baseline stepping/grasping performance. CIS reactions will be tested immediately before and after the six weeks of training, using platform perturbations as well as a distinctly different method of perturbation (waist pulls) in order to evaluate the generalisability of the training effects.</p> <p>Discussion</p> <p>This study will determine whether perturbation-based balance training can help to reverse specific age-related impairments in balance-recovery reactions. These results will help to guide the development of more effective falls prevention programs, which may ultimately lead to reduced health-care costs and enhanced mobility, independence and quality of life.</p

    Armed against falls: the contribution of arm movements to balance recovery after tripping

    Get PDF
    Arm movements after perturbations like tripping over an obstacle have been suggested to be aspecific startle responses, serve a protective function or contribute to balance recovery. This study aimed at determining if and how arm movements play a functional role in balance recovery after a perturbation. We tripped young subjects using an obstacle that suddenly appeared from the floor at exactly mid-swing. We measured arm muscle EMG, quantified body rotations after tripping, and established the effects of arm movements by calculating how the body would have rotated without arms. Strong asymmetric shoulder muscle responses were observed within 100 ms after trip initiation. Significantly faster and larger responses were found in the contralateral arm abductors on the non-tripped (right) side. Mean amplitudes were larger in the ipsilateral retroflexors and contralateral anteflexors. The resulting asymmetric arm movements had a small effect on body rotation in the sagittal and frontal planes, but substantially affected the body orientation in the transverse plane. With the enlargement of the ongoing arm swing, the arms contributed to balance recovery by postponing the transfer of arm angular momentum to the trunk. This resulted in an axial rotation of the lower segments of the body towards the non-tripped side, which increases the length of the recovery step in the sagittal plane, and therefore facilitates braking the impending fall. © 2009 Springer-Verlag
    • …
    corecore