176 research outputs found

    On the thermodynamic origin of metabolic scaling

    Get PDF
    This work has been funded by projects AYA2013-48623-C2-2, FIS2013-41057-P, CGL2013-46862-C2-1-P and SAF2015-65878-R from the Spanish Ministerio de Economa y Competitividad and PrometeoII/2014/086, PrometeoII/2014/060 and PrometeoII/2014/065 from the Generalitat Valenciana (Spain). BL acknowledges funding from a Salvador de Madariaga fellowship, and L.L. acknowledges funding from EPSRC Early Career fellowship EP/P01660X/1

    Ontogenetic phase shifts in metabolism in a flounder Paralichthys olivaceus

    Get PDF
    Size-scaling metabolism is widely considered to be of significant importance in biology and ecology. Thus, allometric relationships between metabolic rate (VO2) and body mass (M), V O25aiMb, have long been a topic of interest and speculation. It has been proposed that intraspecifically metabolic rate scales isometrically or near isometrically with body mass during the early life history in fishes, invertebrates, birds and mammals. We developed a new perspective on intraspecific size-scaling metabolism through determination of metabolic rate in the Japanese flounder, Paralichthys olivaceus, during their early life stages spanning approximately four orders of magnitude in body mass. With the increase of body mass, the Japanese flounder had four distinct negative allometric phases in which three stepwise increases in scaling constants (ai, i51?4), i.e. ontogenetic phase shifts in metabolism, occurred with growth during its early life stages at around 0.002, 0.01 and 0.2 g, maintaining each scaling exponent constant in each phase (b50.831).These shifts in metabolism during the early life stages are similar to the tiger puffer, Takifugu rubripes. Our results indicate that ontogenetic phase shifts in metabolism are key to understanding intraspecific size-scaling metabolism in fishes

    Primary care and health inequality : Difference-in-difference study comparing England and Ontario

    Get PDF
    BACKGROUND: It is not known whether equity-oriented primary care investment that seeks to scale up the delivery of effective care in disadvantaged communities can reduce health inequality within high-income settings that have pre-existing universal primary care systems. We provide some non-randomised controlled evidence by comparing health inequality trends between two similar jurisdictions-one of which implemented equity-oriented primary care investment in the mid-to-late 2000s as part of a cross-government strategy for reducing health inequality (England), and one which invested in primary care without any explicit equity objective (Ontario, Canada). METHODS: We analysed whole-population data on 32,482 neighbourhoods (with mean population size of approximately 1,500 people) in England, and 18,961 neighbourhoods (with mean population size of approximately 700 people) in Ontario. We examined trends in mortality amenable to healthcare by decile groups of neighbourhood deprivation within each jurisdiction. We used linear models to estimate absolute and relative gaps in amenable mortality between most and least deprived groups, considering the gradient between these extremes, and evaluated difference-in-difference comparisons between the two jurisdictions. RESULTS: Inequality trends were comparable in both jurisdictions from 2004-6 but diverged from 2007-11. Compared with Ontario, the absolute gap in amenable mortality in England fell between 2004-6 and 2007-11 by 19.8 per 100,000 population (95% CI: 4.8 to 34.9); and the relative gap in amenable mortality fell by 10 percentage points (95% CI: 1 to 19). The biggest divergence occurred in the most deprived decile group of neighbourhoods. DISCUSSION: In comparison to Ontario, England succeeded in reducing absolute socioeconomic gaps in mortality amenable to healthcare from 2007 to 2011, and preventing them from growing in relative terms. Equity-oriented primary care reform in England in the mid-to-late 2000s may have helped to reduce socioeconomic inequality in health, though other explanations for this divergence are possible and further research is needed on the specific causal mechanisms

    Barriers to primary care responsiveness to poverty as a risk factor for health

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Poverty is widely recognized as a major determinant of poor health, and this link has been extensively studied and verified. Despite the strong evidentiary link, little work has been done to determine what primary care health providers can do to address their patients' income as a risk to their health. This qualitative study explores the barriers to primary care responsiveness to poverty as a health issue in a well-resourced jurisdiction with near-universal health care insurance coverage.</p> <p>Methods</p> <p>One to one interviews were conducted with twelve experts on poverty and health in primary care in Ontario, Canada. Participants included family physicians, specialist physicians, nurse practitioners, community workers, advocates, policy experts and researchers. The interviews were analysed for anticipated and emergent themes.</p> <p>Results</p> <p>This study reveals provider- and patient-centred structural, attitudinal, and knowledge-based barriers to addressing poverty as a risk to health. While many of its findings reinforce previous work in this area, this study's findings point to a number of areas front line primary care providers could target to address their patients' poverty. These include a lack of provider understanding of the lived reality of poverty, leading to a failure to collect adequate data about patients' social circumstances, and to the development of inappropriate care plans. Participants also pointed to prejudicial attitudes among providers, a failure of primary care disciplines to incorporate approaches to poverty as a standard of care, and a lack of knowledge of concrete steps providers can take to address patients' poverty.</p> <p>Conclusions</p> <p>While this study reinforces, in a well-resourced jurisdiction such as Ontario, the previously reported existence of significant barriers to addressing income as a health issue within primary care, the findings point to the possibility of front line primary care providers taking direct steps to address the health risks posed by poverty. The consistent direction and replicability of these findings point to a refocusing of the research agenda toward an examination of interventions to decrease the health impacts of poverty.</p

    DADA: Degree-Aware Algorithms for Network-Based Disease Gene Prioritization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High-throughput molecular interaction data have been used effectively to prioritize candidate genes that are linked to a disease, based on the observation that the products of genes associated with similar diseases are likely to interact with each other heavily in a network of protein-protein interactions (PPIs). An important challenge for these applications, however, is the incomplete and noisy nature of PPI data. Information flow based methods alleviate these problems to a certain extent, by considering indirect interactions and multiplicity of paths.</p> <p>Results</p> <p>We demonstrate that existing methods are likely to favor highly connected genes, making prioritization sensitive to the skewed degree distribution of PPI networks, as well as ascertainment bias in available interaction and disease association data. Motivated by this observation, we propose several statistical adjustment methods to account for the degree distribution of known disease and candidate genes, using a PPI network with associated confidence scores for interactions. We show that the proposed methods can detect loosely connected disease genes that are missed by existing approaches, however, this improvement might come at the price of more false negatives for highly connected genes. Consequently, we develop a suite called D<smcaps>A</smcaps>D<smcaps>A</smcaps>, which includes different uniform prioritization methods that effectively integrate existing approaches with the proposed statistical adjustment strategies. Comprehensive experimental results on the Online Mendelian Inheritance in Man (OMIM) database show that D<smcaps>A</smcaps>D<smcaps>A</smcaps> outperforms existing methods in prioritizing candidate disease genes.</p> <p>Conclusions</p> <p>These results demonstrate the importance of employing accurate statistical models and associated adjustment methods in network-based disease gene prioritization, as well as other network-based functional inference applications. D<smcaps>A</smcaps>D<smcaps>A</smcaps> is implemented in Matlab and is freely available at <url>http://compbio.case.edu/dada/</url>.</p

    The Allometry of Host-Pathogen Interactions

    Get PDF
    Understanding the mechanisms that control rates of disease progression in humans and other species is an important area of research relevant to epidemiology and to translating studies in small laboratory animals to humans. Body size and metabolic rate influence a great number of biological rates and times. We hypothesize that body size and metabolic rate affect rates of pathogenesis, specifically the times between infection and first symptoms or death.We conducted a literature search to find estimates of the time from infection to first symptoms (t(S)) and to death (t(D)) for five pathogens infecting a variety of bird and mammal hosts. A broad sampling of diseases (1 bacterial, 1 prion, 3 viruses) indicates that pathogenesis is controlled by the scaling of host metabolism. We find that the time for symptoms to appear is a constant fraction of time to death in all but one disease. Our findings also predict that many population-level attributes of disease dynamics are likely to be expressed as dimensionless quantities that are independent of host body size.Our results show that much variability in host pathogenesis can be described by simple power functions consistent with the scaling of host metabolic rate. Assessing how disease progression is controlled by geometric relationships will be important for future research. To our knowledge this is the first study to report the allometric scaling of host/pathogen interactions

    Scaling Dynamic Response and Destructive Metabolism in an Immunosurveillant Anti-Tumor System Modulated by Different External Periodic Interventions

    Get PDF
    On the basis of two universal power-law scaling laws, i.e. the scaling dynamic hysteresis in physics and the allometric scaling metabolism in biosystem, we studied the dynamic response and the evolution of an immunosurveillant anti-tumor system subjected to a periodic external intervention, which is equivalent to the scheme of a radiotherapy or chemotherapy, within the framework of the growth dynamics of tumor. Under the modulation of either an abrupt or a gradual change external intervention, the population density of tumors exhibits a dynamic hysteresis to the intervention. The area of dynamic hysteresis loop characterizes a sort of dissipative-therapeutic relationship of the dynamic responding of treated tumors with the dose consumption of accumulated external intervention per cycle of therapy. Scaling the area of dynamic hysteresis loops against the intensity of an external intervention, we deduced a characteristic quantity which was defined as the theoretical therapeutic effectiveness of treated tumor and related with the destructive metabolism of tumor under treatment. The calculated dose-effectiveness profiles, namely the dose cumulant per cycle of intervention versus the therapeutic effectiveness, could be well scaled into a universal quadratic formula regardless of either an abrupt or a gradual change intervention involved. We present a new concept, i.e., the therapy-effect matrix and the dose cumulant matrix, to expound the new finding observed in the growth and regression dynamics of a modulated anti-tumor system

    Sizing Up Allometric Scaling Theory

    Get PDF
    Metabolic rate, heart rate, lifespan, and many other physiological properties vary with body mass in systematic and interrelated ways. Present empirical data suggest that these scaling relationships take the form of power laws with exponents that are simple multiples of one quarter. A compelling explanation of this observation was put forward a decade ago by West, Brown, and Enquist (WBE). Their framework elucidates the link between metabolic rate and body mass by focusing on the dynamics and structure of resource distribution networks—the cardiovascular system in the case of mammals. Within this framework the WBE model is based on eight assumptions from which it derives the well-known observed scaling exponent of 3/4. In this paper we clarify that this result only holds in the limit of infinite network size (body mass) and that the actual exponent predicted by the model depends on the sizes of the organisms being studied. Failure to clarify and to explore the nature of this approximation has led to debates about the WBE model that were at cross purposes. We compute analytical expressions for the finite-size corrections to the 3/4 exponent, resulting in a spectrum of scaling exponents as a function of absolute network size. When accounting for these corrections over a size range spanning the eight orders of magnitude observed in mammals, the WBE model predicts a scaling exponent of 0.81, seemingly at odds with data. We then proceed to study the sensitivity of the scaling exponent with respect to variations in several assumptions that underlie the WBE model, always in the context of finite-size corrections. Here too, the trends we derive from the model seem at odds with trends detectable in empirical data. Our work illustrates the utility of the WBE framework in reasoning about allometric scaling, while at the same time suggesting that the current canonical model may need amendments to bring its predictions fully in line with available datasets
    corecore