54 research outputs found

    The future of medical diagnostics: Review paper

    Get PDF
    While histopathology of excised tissue remains the gold standard for diagnosis, several new, non-invasive diagnostic techniques are being developed. They rely on physical and biochemical changes that precede and mirror malignant change within tissue. The basic principle involves simple optical techniques of tissue interrogation. Their accuracy, expressed as sensitivity and specificity, are reported in a number of studies suggests that they have a potential for cost effective, real-time, in situ diagnosis. We review the Third Scientific Meeting of the Head and Neck Optical Diagnostics Society held in Congress Innsbruck, Innsbruck, Austria on the 11th May 2011. For the first time the HNODS Annual Scientific Meeting was held in association with the International Photodynamic Association (IPA) and the European Platform for Photodynamic Medicine (EPPM). The aim was to enhance the interdisciplinary aspects of optical diagnostics and other photodynamic applications. The meeting included 2 sections: oral communication sessions running in parallel to the IPA programme and poster presentation sessions combined with the IPA and EPPM posters sessions. © 2011 Jerjes et al; licensee BioMed Central Ltd

    Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia

    Get PDF
    Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10⁻⁶, 1.7 × 10⁻⁹, 3.5 × 10⁻¹² and 1.0 × 10⁻⁴, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes

    In vivo imaging of enamel by reflectance confocal microscopy (RCM): non-invasive analysis of dental surface

    No full text
    The aim is to establish the feasibility to image in vivo microscopic dental surface by non-invasive, real-time, en face Reflectance Confocal Microscopy (RCM). Fifteen healthy volunteers referred at the Multidisciplinary Department of Medical-Surgical and Odontostomatological Specialties, Second University of Naples, Naples, Italy, were enrolled. A commercially available hand-held RCM (Vivascope(®)3000, Lucid, Rochester, NY, USA) was used to image in vivo the dental surface of the upper right and left central incisors of each volunteer. Totally, thirty vestibular surfaces of upper central incisors were imaged in vivo by RCM to preliminary image the dental surface and assess the feasibility of a more extended study on teeth. In vivo RCM was able to image the dental surface within the enamel, at a maximum depth imaging of 300 μm, with images good in quality and the capability to detect enamel structures such as enamel lamellae and enamel damages, such as unevenness and cracks. In conclusion, enamel "optical biopsy", gained by RCM imaging, revealed to be a non-invasive real-time tool valid to obtain architectural details of the dental surface with no need for extraction or processing the samples. RCM appears to be an optimum auxiliary device for investigating the architectural pattern of superficial enamel, therefore inviting further experiments aimed to define our knowledge about damages after etching treatments or bracket removal and the responsiveness to fluoride seals and the morphology of the tooth/restoration interface. Moreover, this device could also be used to detect relevant diseases like caries, or to assess surface properties to evaluate lesion activity
    corecore