306 research outputs found
The missing Rheic Ocean magmatic arcs: Provenance analysis of Late Paleozoic
Early Carboniferous turbiditic sedimentary rocks in synorogenic basins located on both sides of the Rheic suture in
SW Iberiawere studied for provenance analysis. An enigmatic feature of this suture, which resulted from closure
of the Rheic Ocean with the amalgamation of Pangea in the Late Carboniferous, is that there are no recognizable
mid- to Late Devonian subduction-related magmatic rocks,which should have been generated during the process
of subduction, on either side of it. U–Pb LA–ICP-MS geochronology of detrital zircons from Early Carboniferous
turbidites in the vicinity of the Rheic suture in SW Iberia, where it separates the Ossa–Morena Zone (with
Gondwana continental basement) to the north from the South Portuguese Zone (with unknown/Meguma?
continental basement) to the south, reveals the abundance of mid- to Late Devonian (51–81%) and Early
Carboniferous (13–25%) ages. The Cabrela andMértola turbidites of the Ossa–Morena and South Portuguese
zones, respectively, are largely devoid of older zircons, differing from the age spectra of detrital zircons in
the oldest (Late Devonian) strata in the underlying South Portuguese Zone, which contain abundant Cambrian
and Neoproterozoic ages. Mid- to Late Devonian zircons in the Cabrela Formation (age cluster at c. 391 Ma,
Eifelian–Givetian transition) and Mértola Formation (age clusters at c. 369 Ma and at c. 387 Ma, Famennian
and Givetian respectively) are attributable to a source terrane made up of magmatic rocks with a simple
geological history lacking both multiple tectonic events and older continental basement. The terrane capa-
ble of sourcing sediments dispersed on both sides of the suture is interpreted to have been completely re-
moved by erosion in SW Iberia. Given that closure of the Rheic Ocean required subduction of its oceanic
lithosphere and the absence of significant arc magmatism on either side of the Rheic suture, we suggest:
1) the source of the zircons in the SW Iberia basins was a short-lived Rheic ocean magmatic arc, and
2) given the lack of older zircons in the SW Iberia basins, this short-lived arc was probably developed
in an intra-oceanic environment
An experimental and modeling study on the reactivity of extremely fuel-rich methane/dimethyl ether mixtures
Chemical reactions in stoichiometric to fuel-rich methane/dimethyl ether/air mixtures (fuel air equiva- lence ratio φ=1–20) were investigated by experiment and simulation with the focus on the conversion of methane to chemically more valuable species through partial oxidation. Experimental data from dif- ferent facilities were measured and collected to provide a large database for developing and validating a reaction mechanism for extended equivalence ratio ranges. Rapid Compression Machine ignition delay times and species profiles were collected in the temperature range between 660 and 1052 K at 10 bar and equivalence ratios of φ= 1–15. Ignition delay times and product compositions were measured in a shock tube at temperatures of 630–1500 K, pressures of 20–30 bar and equivalence ratios of φ= 2 and 10. Ad- ditionally, species concentration profiles were measured in a flow reactor at temperatures between 473 and 973 K, a pressure of 6 bar and equivalence ratios of φ= 2, 10, and 20. The extended equivalence ratio range towards extremely fuel-rich mixtures as well as the reaction-enhancing effect of dimethyl ether were studied because of their usefulness for the conversion of methane into chemically valuable species through partial oxidation at these conditions. Since existing reaction models focus only on equivalence ratios in the range of φ= 0.3–2.5, an extended chemical kinetics mechanism was developed that also covers extremely fuel-rich conditions of methane/dimethyl ether mixtures. The measured ignition delay times and species concentration profiles were compared with the predictions of the new mechanism, which is shown to predict well the ignition delay time and species concentration evolution measure- ments presented in this work. Sensitivity and reaction pathway analyses were used to identify the key reactions governing the ignition and oxidation kinetics at extremely fuel-rich conditions
Annex 6: Changing Ocean Impacts on the Key Forage Fish Species Arctic Cod in the Western Canadian Arctic – Linking Climate Model Projections to Subsistence Fisheries
This annex highlights the results of a study focusing on the potential impacts of ocean acidification and other climate- related stressors on marine species relevant for subsistence fisheries in the Western Arctic Bioregion. The study uses a knowledge co-production approach developed in the form of a multi-step process based on a combination of modelling and analysis tools including the Scientific Method and Indigenous Traditional Knowledge (Figure A6.1). Once all steps have been completed, uncertainties can be estimated and improvements can be made either with respect to the individual steps or to the linkages between them. The process can then be repeated, including those improvements to provide a revised assessment with reduced uncertainty ranges. The steps can be summarized as follows: (1) analyze past observed trends; (2) perform projection simulations with global and regional climate models, allowing trend estimates on 20–50 year timescales; (3) assess physiological responses and thresholds in marine species via literature research, Indigenous Traditional Knowledge, observations and focused laboratory experiments; (4) add trends, climate model projections and physiological response data to species distribution / habitat suitability and higher trophic level Ecosim/ Ecopath (see Section A6.3) models; (5) assess socio-economic impacts by applying bio-economic models, evaluating current fishery-economic activities, and discussion with communities/ community representatives; and (6) review law and governance. The latter addresses adaptation measures on global, regional and national scales.
This annex describes the first application of the multi-step framework in the Western Arctic Bioregion. At this point in time all the required tools have been developed, but not all components have been adequately linked. For example, while higher resolution model projections are available for the area the habitat suitability and economic models are still driven by global climate models, the Ecopath model (see Section on The Beaufort Sea food web model) has not yet been run into the future and physiological responses are reflected in the higher trophic level models to a limited extent, if at all. In addition, while collaboration with local communities has been established (see Section on Community interests), Indigenous Traditional Knowledge has been included to a very limited extent. To summarize, this case study provides an assessment that includes all required tools, but limited linkages. It has a strong focus on uncertainty analyses and the identification of gaps in knowledge. Particular emphasis is given to the key forage fish species Arctic cod (Boreogadus saida), since climate model projections can be linked more directly to key forage species than to the (mostly) higher trophic level species harvested
Flexible energy conversion and storage via high-temperature gas-phase reactions: The piston engine as a polygeneration reactor
Piston engines are typically considered devices converting chemical energy into mechanical power via internal combustion. But more generally, their ability to provide high-pressure and high-temperature conditions for a limited time means they can be used as chemical reactors where reactions are initiated by compression heating and subsequently quenched by gas expansion. Thus, piston engines could be “polygeneration” reactors that can flexibly change from power generation to chemical synthesis, and even to chemical-energy storage. This may help mitigating one of the main challenges of future energy systems – accommodating fluctuations in electricity supply and demand. Investments in devices for grid stabilization could be more economical if they have a second use.
This paper presents a systematic approach to polygeneration in piston engines, combining thermodynamics, kinetics, numerical optimization, engineering, and thermo-economics. A focus is on the fuel-rich conversion of methane as a fuel that is considered important for the foreseeable future. Starting from thermodynamic theory and kinetic modeling, promising systems are selected. Mathematical optimization and an array of experimental kinetic investigations are used for model improvement and development. To evaluate technical feasibility, experiments are then performed in both a single-stroke rapid compression machine and a reciprocating engine. In both cases, chemical conversion is initiated by homogeneous-charge compression-ignition. A thermodynamic and thermo-economic assessment of the results is positive. Examples that illustrate how the piston engine can be used in polygeneration processes to convert methane to higher-value chemicals or to take up carbon dioxide are presented. Open issues for future research are addressed
Ground State Vortex Lattice Structures in d-wave Superconductors
We show in a realistic symmetry gap model for a cuprate
superconductor that the clean vortex lattice has discontinuous structural
transitions (at and near T=0), as a function of the magnetic field along
the c-axis. The transitions arise from the singular nonlocal and anisotropic
susceptibility of the superconductor to the perturbation
caused by supercurrents associated with vortices. The susceptibility, due to
virtual Dirac quasiparticle-hole excitation, is calculated carefully, and leads
to a ground state transition for the triangular lattice from an orientation
along one of the crystal axis to one at 45 to them, i.e, along the gap zero
direction. The field scale is seen to be 5 Tesla , where is the gap maximum, is the
nearest neighbour hopping, is the lattice constant, and is the
flux quantum. At much higher fields () there is a discontinuous
transition to a centred square structure. The source of the differences from
existing calculations, and experimental observability are discussed, the latter
especially in view of the very small (a few degrees per vortex) differences
in the ground state energy.Comment: To be published in Phys. Rev.
Impacts of the Changing Ocean-Sea Ice System on the Key Forage Fish Arctic Cod (Boreogadus Saida) and Subsistence Fisheries in the Western Canadian Arctic—Evaluating Linked Climate, Ecosystem and Economic (CEE) Models
This study synthesizes results from observations, laboratory experiments and models to showcase how the integration of scientific methods and indigenous knowledge can improve our understanding of (a) past and projected changes in environmental conditions and marine species; (b) their effects on social and ecological systems in the respective communities; and (c) support management and planning tools for climate change adaptation and mitigation. The study links climate-ecosystem-economic (CEE) models and discusses uncertainties within those tools. The example focuses on the key forage species in the Inuvialuit Settlement Region (Western Canadian Arctic), i.e., Arctic cod (Boreogadus saida). Arctic cod can be trophically linked to sea-ice algae and pelagic primary producers and are key vectors for energy transfers from plankton to higher trophic levels (e.g., ringed seals, beluga), which are harvested by Inuit peoples. Fundamental changes in ice and ocean conditions in the region affect the marine ecosystem and fish habitat. Model simulations suggest increasing trends in oceanic phytoplankton and sea-ice algae with high interannual variability. The latter might be linked to interannual variations in Arctic cod abundance and mask trends in observations. CEE simulations incorporating physiological temperature limits data for the distribution of Arctic cod, result in an estimated 17% decrease in Arctic cod populations by the end of the century (high emission scenario), but suggest increases in abundance for other Arctic and sub-Arctic species. The Arctic cod decrease is largely caused by increased temperatures and constraints in northward migration, and could directly impact key subsistence species. Responses to acidification are still highly uncertain, but sensitivity simulations suggests an additional 1% decrease in Arctic cod populations due to pH impacts on growth and survival. Uncertainties remain with respect to detailed future changes, but general results are likely correct and in line with results from other approaches. To reduce uncertainties, higher resolution models with improved parameterizations and better understanding of the species' physiological limits are required. Arctic communities should be directly involved, receive tools and training to conduct local, unified research and food chain monitoring while decisions regarding commercial fisheries will need to be precautionary and adaptive in light of the existing uncertainties
The LAGUNA design study- towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches
The feasibility of a next generation neutrino observatory in Europe is being
considered within the LAGUNA design study. To accommodate giant neutrino
detectors and shield them from cosmic rays, a new very large underground
infrastructure is required. Seven potential candidate sites in different parts
of Europe and at several distances from CERN are being studied: Boulby (UK),
Canfranc (Spain), Fr\'ejus (France/Italy), Pyh\"asalmi (Finland),
Polkowice-Sieroszowice (Poland), Slanic (Romania) and Umbria (Italy). The
design study aims at the comprehensive and coordinated technical assessment of
each site, at a coherent cost estimation, and at a prioritization of the sites
within the summer 2010.Comment: 5 pages, contribution to the Workshop "European Strategy for Future
Neutrino Physics", CERN, Oct. 200
The mutational impact of culturing human pluripotent and adult stem cells
Genetic changes acquired during in vitro culture pose a risk for the successful application of stem cells in regenerative medicine. To assess the genetic risks induced by culturing, we determined all mutations in individual human stem cells by whole genome sequencing. Individual pluripotent, intestinal, and liver stem cells accumulate 3.5 ± 0.5, 7.2 ± 1.1 and 8.3 ± 3.6 base substitutions per population doubling, respectively. The annual in vitro mutation accumulation rate of adult stem cells is nearly 40-fold higher than the in vivo mutation accumulation rate. Mutational signature analysis reveals that in vitro induced mutations are caused by oxidative stress. Reducing oxygen tension in culture lowers the mutational load. We use the mutation rates, spectra, and genomic distribution to model the accumulation of oncogenic mutations during typical in vitro expansion, manipulation or screening experiments using human stem cells. Our study provides empirically defined parameters to assess the mutational risk of stem cell based therapies
- …