71 research outputs found

    The importance of the altricial – precocial spectrum for social complexity in mammals and birds:A review

    Get PDF
    Various types of long-term stable relationships that individuals uphold, including cooperation and competition between group members, define social complexity in vertebrates. Numerous life history, physiological and cognitive traits have been shown to affect, or to be affected by, such social relationships. As such, differences in developmental modes, i.e. the ‘altricial-precocial’ spectrum, may play an important role in understanding the interspecific variation in occurrence of social interactions, but to what extent this is the case is unclear because the role of the developmental mode has not been studied directly in across-species studies of sociality. In other words, although there are studies on the effects of developmental mode on brain size, on the effects of brain size on cognition, and on the effects of cognition on social complexity, there are no studies directly investigating the link between developmental mode and social complexity. This is surprising because developmental differences play a significant role in the evolution of, for example, brain size, which is in turn considered an essential building block with respect to social complexity. Here, we compiled an overview of studies on various aspects of the complexity of social systems in altricial and precocial mammals and birds. Although systematic studies are scarce and do not allow for a quantitative comparison, we show that several forms of social relationships and cognitive abilities occur in species along the entire developmental spectrum. Based on the existing evidence it seems that differences in developmental modes play a minor role in whether or not individuals or species are able to meet the cognitive capabilities and requirements for maintaining complex social relationships. Given the scarcity of comparative studies and potential subtle differences, however, we suggest that future studies should consider developmental differences to determine whether our finding is general or whether some of the vast variation in social complexity across species can be explained by developmental mode. This would allow a more detailed assessment of the relative importance of developmental mode in the evolution of vertebrate social systems

    Saving and empowering young lives in Europe (SEYLE) : a randomized controlled trial

    Get PDF
    There have been only a few reports illustrating the moderate effectiveness of suicide-preventive interventions in reducing suicidal behavior, and, in most of those studies, the target populations were primarily adults, whereas few focused on adolescents. Essentially, there have been no randomized controlled studies comparing the efficacy, cost-effectiveness and cultural adaptability of suicide-prevention strategies in schools. There is also a lack of information on whether suicide-preventive interventions can, in addition to preventing suicide, reduce risk behaviors and promote healthier ones as well as improve young people's mental health.The aim of the SEYLE project, which is funded by the European Union under the Seventh Framework Health Program, is to address these issues by collecting baseline and follow-up data on health and well-being among European adolescents and compiling an epidemiological database; testing, in a randomized controlled trial, three different suicide-preventive interventions; evaluating the outcome of each intervention in comparison with a control group from a multidisciplinary perspective; as well as recommending culturally adjusted models for promoting mental health and preventing suicidal behaviors

    Effects of Atmospheric Rivers

    No full text
    This book is intended to summarize the state of the science of atmospheric rivers (ARs) and itsapplication to practical decision-making and broader policy topics. It is the first book on thesubject and is intended to be a learning resource for professionals, students, and indeed anyonenew to the field, as well as a reference source for all.We first envisioned the book during the heady days of 2013 when the Center for WesternWeather and Water Extremes was being planned and established. However, right from the start,we recognized that the effort required would exceed that of any single or couple of authors, andthat the book would surely benefit from a broad range of perspectives and knowledge from avariety of leaders of atmospheric-river science from around the world. Consequently, the firststep toward this book was to organize workshops addressing various aspects of AR science thatwe were able to co-opt, in part, for recruitment of, and discussions among, possible contributingauthors. This led to the diverse authorship team that ultimately wrote this book, as well asour engagement of an experienced publication and book editing team. Among the strategiesagreed to by the contributing authors, one key decision was that the book would focus mostlyon results that have already been published and would emphasize figures and references fromthose formal publications. Where vital, new information has been developed and incorporated.Each chapter was led by a few expert lead authors recruited by the four of us, and those chapterleads recruited contributions from other experts on the chapter topic. Each chapter wasreviewed by other specialists who were not part of its authorship team, generally including onehighly technical expert and one reviewer intended to represent members of a broader audience.This helped ensure the accuracy of interpretations as well as high standards and accessibilityof presentation. We, the editors of the book, reviewed all chapters at various stages of compositionand layout.Given currently high levels of interest in ARs in the scientific community as well as by thepublic, we hope that the book will be a useful starting place for many readers. Writing a bookabout a topic that is as new and that is advancing as quickly as AR science is today (in 2018)poses many difficult challenges but, with the help of the large team of expert authors who havecontributed, we believe that, with this book, we are providing a firm foundation for futureexpansion and advances in this important field.Fil: Dettinger, Michael D.. United States Geological Survey; Estados UnidosFil: Lavers, David A.. No especifíca;Fil: Compo, Gilbert P.. State University of Colorado at Boulder; Estados UnidosFil: Gorodetskaya, Irina V.. Universidade de Aveiro; PortugalFil: Neff, William. State University of Colorado at Boulder; Estados UnidosFil: Neiman, Paul J.. National Oceanic And Atmospheric Administration; Estados UnidosFil: Ramos, Alexandre M.. Universidade Nova de Lisboa; PortugalFil: Rutz, Jonathan J.. National Weather Service; Estados UnidosFil: Viale, Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Provincia de Mendoza. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales. Universidad Nacional de Cuyo. Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales; ArgentinaFil: Wade, Andrew J.. University of Reading; Reino UnidoFil: White, Allen B.. National Oceanic And Atmospheric Administration; Estados Unido

    Effects of dietary trace mineral sources and levels fed to layers in their second laying cycle on the quality of eggs stored at different temperatures and for different periods

    No full text
    This study aimed at evaluating the effects of trace mineral levels and sources supplemented to diets fed to semi-heavy layers in their second laying cycle on the quality of eggs stored for 14 days at different temperatures. The experimental diets consisted of the inclusion of inorganic trace minerals (T1 - control: 100% ITM) and five supplementation levels of organic trace minerals (carboaminophopho chelates) (110, 100, 90, 80, and 70% OTM). Trace mineral inclusion levels (mg/kg feed) were: T1: control - 100% ITM: Zn (54), Fe (54), Mn (72), Cu (10), I (0.61) Se (0.3); T2 - 110% OTM: Zn (59.4), Fe (59.4), Mn (79.2), Cu (11.88), I (1.21) Se (0.59); T3 - 100%: OTM: Zn (54), Fe (54), Mn (72), Cu (10.8), I (1.10) Se (0.54); T4 - 90% OTM: Zn (48.6), Fe (48.6), Mn (64.8), Cu (9.72), I (0.99) Se (0.49); T5 - 80% OTM: Zn (43.2), Fe (43.2), Mn (57.6), Cu (8.64), I (0.88), Se (0.43); T6 - 70% OTM: Zn (37.8), Fe (37.8), Mn (50.4), Cu (7.56), I (0.77) Se (0.38). A completely randomized experimental design in a split-plot arrangement with 60 treatments of four replicates each was applied. The combination of six diets versus storage temperature (room or under refrigeration) was randomized in plots, whereas the sub-plots consisted of storage times (0, 3, 7, 10, and 14 days). Data were submitted to analysis of variance of a model in slip-plots in time using the software package SAS (2000) at 5% probability level. It was concluded that 70% OTM supplementation can be used with no damage to egg quality, independently from storage temperature or time. The quality of refrigerated eggs stored up to 14 days is better than those stored at room temperature
    corecore