158 research outputs found
The 27-day solar rotational cycle response in the mesospheric metal layers at low latitudes
To investigate the response of the meteoric metal layers in the mesosphere and lower thermosphere region to the 27-day solar rotational cycle, a long-term simulation of the Whole Atmosphere Climate Community Model (WACCM) with the chemistry of three metals (Na, K, and Fe) was analysed. The correlation between variability in the metal layers and solar 27-day forcing during different phases of the solar 11-year cycle reveals that the response in the metal layers is much stronger during solar maximum. The altitude dependent correlation and sensitivity of the metal layers to the solar spectral irradiance demonstrates that there is a significant increase in sensitivity to solar rotational cycle with increasing altitude. Above 100 km, the sensitivity of the metals to changes of 10% in the SSI at Lyman-alpha is estimated to be -5%. A similar response is seen in Na layer measurements made by the OSIRIS instrument on the Odin satellite
Solar cycle response and long-term trends in the mesospheric metal layers
The meteoric metal layers (Na, Fe, and K)âwhich form as a result of the ablation of incoming meteorsâact as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere region. In this work, we examine whether these metal layers are sensitive indicators of decadal long-term changes within the upper atmosphere. Output from a whole-atmosphere climate model is used to assess the response of the Na, K, and Fe layers across a 50âyear period (1955â2005). At short timescales, the K layer has previously been shown to exhibit a very different seasonal behavior compared to the other metals. Here we show that this unusual behavior is also exhibited at longer timescales (both the ~11âyear solar cycle and 50âyear periods), where K displays a much more pronounced response to atmospheric temperature changes than either Na or Fe. The contrasting solar cycle behavior of the K and Na layers predicted by the model is confirmed using satellite and lidar observations for the period 2004â2013
D-region ionâneutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) â WACCM-SIC and WACCM-rSIC
This study presents a new ionâneutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes âźââŻ50â90âŻkm) chemistry is based on the Sodankylä Ion Chemistry (SIC) model, a one-dimensional model containing 307 ionâneutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ionâmolecule reactions of 181 ionâmolecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20âŻkm and 120âŻkm of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3â, NO2â, Oâ, O2, OHâ, O2â(H2O), O2â(H2O)2, O4â, CO3â, CO3â(H2O), CO4â, HCO3â, NO2â, NO3â, NO3â(H2O), NO3â(H2O)2, NO3â(HNO3), NO3â(HNO3)2, Clâ, ClOâ), which agree with the full SIC mechanism within a 5âŻ% tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ionâmolecule reactions that affect the partitioning of odd nitrogen (NOx), odd hydrogen (HOx) and O3 in the stratosphere and mesosphere
Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results
Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly mean Mg and Mg+ number density and vertical column density in different latitudinal regions are presented. Data from the limb mesosphereâthermosphere mode of SCIAMACHY/Envisat are used, which cover the 50 to 150 km altitude region with a vertical sampling of â3.3 km and latitudes up to 82°. The high latitudes are not observed in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cmâ3 and 1500 cmâ3. Mg does not show strong seasonal variation at latitudes below 40°. For higher latitudes the density is lower and only in the Northern Hemisphere a seasonal cycle with a summer minimum is observed. The Mg+ peak occurs 5â15 km above the neutral Mg peak altitude. These ions have a significant seasonal cycle with a summer maximum in both hemispheres at mid and high latitudes. The strongest seasonal variations of Mg+ are observed at latitudes between 20 and 40° and the density at the peak altitude ranges from 500 cmâ3 to 4000 cmâ3. The peak altitude of the ions shows a latitudinal dependence with a maximum at mid latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. The WACCM results show a significant seasonal variability for Mg with a summer minimum, which is more clearly pronounced than for SCIAMACHY, and globally a higher peak density than the SCIAMACHY results. Although the peak density of both is not in agreement, the vertical column density agrees well, because SCIAMACHY and WACCM profiles have different widths. The agreement between SCIAMACHY and WACCM results is much better for Mg+ with both showing the same seasonality and similar peak density. However, there are also minor differences, e.g. WACCM showing a nearly constant altitude of the Mg+ layer's peak density for all latitudes and seasons
Climatology of mesopause region nocturnal temperature, zonal wind, and sodium density observed by sodium lidar over Hefei, China (32°N, 117°E)
The University of Science and Technology of China narrowband sodium temperature/wind 16 lidar, located in Hefei, China (32°N, 117°E), has made routine nighttime measurements since 17 January 2012. 154 nights (~1400 hours) of vertical profiles of temperature, sodium density, 18 and zonal wind, and 83 nights (~800 hours) of vertical flux of gravity wave (GW) zonal 19 momentum in the mesopause region (80-105 km) have been obtained during the period from 20 2012 to 2016. In temperature, it is most likely that the diurnal tide dominates below 100 km in 21 spring, while the semidiurnal tide dominates above 100 km throughout the year. A clear 22 semiannual variation in temperature is revealed near 90 km, in phase with the tropical 23 mesospheric semiannual oscillation (MSAO). The variability of sodium density is positively 24 correlated with temperature below 95 km, suggesting that in addition to dynamics, the 25 chemistry also plays an important role in the formation of sodium atoms. The seasonal 26 variability of sodium density observed by both lidar and satellite generally agrees well with a 27 whole atmosphere model simulation using an updated meteoric input function which includes 28 different cosmic dust sources. In zonal wind, the diurnal tide dominates in both spring and fall, 29 while semidiurnal tide dominates in winter. The observed semiannual variation in zonal wind 30 near 90 km is out-of-phase with that in temperature, consistent with the tropical MSAO. The 31 GW zonal momentum flux is mostly westward in fall and winter, anti-correlated with eastward zonal wind. The annual mean flux averaged over 87-97 km is ~-0.3 m 2 /s2 32 33 (westward), anti-correlated with eastward zonal wind of ~10 m/s. The lidar observations 34 generally agree with satellite and meteor radar observations as well as model simulations at 35 similar latitudes
Self-consistent Global Transport of Metallic Ions with WACCM-X
The NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere eXtension (WACCM-X) v2.1 has been extended to include the neutral and ion-molecule chemistry and dynamics of three metals (Mg, Na, and Fe), which are injected into the upper mesosphere-lower thermosphere by meteoric ablation. Here we focus on the self-consistent electrodynamical transport of metallic ions in both the E and F regions. The model with full ion transport significantly improves the simulation of global distribution and seasonal variations of Mg+, although the peak density is slightly lower (about 35ÄâŹÂŻ% lower in peak density) compared with the SCIAMACHY measurements. Near the magnetic equator, the diurnal variation in upward and downward transport of Mg+ is generally consistent with the "ionosphere fountain effect". The thermospheric distribution of Fe is shown to be closely coupled to the transport of Fe+. The effect of ion mass on ion transport is also examined: The lighter ions (Mg+ and Na+) are transported above 150ÄâŹÂŻkm more easily than the heavy Fe+. We also examine the impact of the transport of major molecular ions, NO+ and O2+, on the distribution of metallic ions
A global atmospheric model of meteoric iron
The first global model of meteoric iron in the atmosphere (WACCM-Fe) has been developed by combining three components: the Whole Atmosphere Community Climate Model (WACCM), a description of the neutral and ion-molecule chemistry of iron in the mesosphere and lower thermosphere (MLT), and a treatment of the injection of meteoric constituents into the atmosphere. The iron chemistry treats seven neutral and four ionized iron containing species with 30 neutral and ion-molecule reactions. The meteoric input function (MIF), which describes the injection of Fe as a function of height, latitude, and day, is precalculated from an astronomical model coupled to a chemical meteoric ablation model (CABMOD). This newly developed WACCM-Fe model has been evaluated against a number of available ground-based lidar observations and performs well in simulating the mesospheric atomic Fe layer. The model reproduces the strong positive correlation of temperature and Fe density around the Fe layer peak and the large anticorrelation around 100âkm. The diurnal tide has a significant effect in the middle of the layer, and the model also captures well the observed seasonal variations. However, the model overestimates the peak Fe+concentration compared with the limited rocket-borne mass spectrometer data available, although good agreement on the ion layer underside can be obtained by adjusting the rate coefficients for dissociative recombination of Fe-molecular ions with electrons. Sensitivity experiments with the same chemistry in a 1-D model are used to highlight significant remaining uncertainties in reaction rate coefficients, and to explore the dependence of the total Fe abundance on the MIF and rate of vertical transport
Determination of the atmospheric lifetime and global warming potential of sulfur hexafluoride using a three-dimensional model
We have used the Whole Atmosphere Community Climate Model (WACCM), with an updated treatment of loss processes, to determine the atmospheric lifetime of sulfur hexafluoride (SF6). The model includes the following SF6 removal processes: photolysis, electron attachment and reaction with mesospheric metal atoms. The Sodankylä Ion Chemistry (SIC) model is incorporated into the standard version of WACCM to produce a new version with a detailed D region ion chemistry with cluster ions and negative ions. This is used to determine a latitude- and altitude-dependent scaling factor for the electron density in the standard WACCM in order to carry out multi-year SF6 simulations. The model gives a mean SF6 lifetime over an 11-year solar cycle (Ď) of 1278 years (with a range from 1120 to 1475 years), which is much shorter than the currently widely used value of 3200 years, due to the larger contribution (97.4âŻ%) of the modelled electron density to the total atmospheric loss. The loss of SF6 by reaction with mesospheric metal atoms (Na and K) is far too slow to affect the lifetime. We investigate how this shorter atmospheric lifetime impacts the use of SF6 to derive stratospheric age of air. The age of air derived from this shorter lifetime SF6 tracer is longer by 9âŻ% in polar latitudes at 20âŻkm compared to a passive SF6 tracer. We also present laboratory measurements of the infrared spectrum of SF6 and find good agreement with previous studies. We calculate the resulting radiative forcings and efficiencies to be, on average, very similar to those reported previously. Our values for the 20-, 100- and 500-year global warming potentials are 18âŻ000, 23âŻ800 and 31âŻ300, respectively
A Modeling Study of the Seasonal, Latitudinal, and Temporal Distribution of the Meteoroid Mass Input at Mars: Constraining the Deposition of Meteoric Ablated Metals in the Upper Atmosphere
This study provides a comprehensive description of the deposition of meteor-ablated metals in the upper atmosphere of Mars, accounting for the temporal, vertical, latitudinal, and seasonal distribution. For this purpose, the Leeds Chemical Ablation Model is combined with a meteoroid input function to characterize the size and velocity distributions of three distinctive meteoroid populations around Marsâthe Jupiter-family comets (JFCs), main-belt asteroids, and Halley-type comets (HTCs). These modeling results show a significant midnight-to-noon enhancement of the total mass influx because of the orbital dynamics of Mars, with meteoroid impacts preferentially distributed around the equator for particles with diameters below 2000 Îźm. The maximum total mass input occurs between the northern winter and the first crossing of the ecliptic plane with 2.30 tons solâ1, with the JFCs being the main contributor to the overall influx with up to 56% around Mars' equator. Similarly, total ablated atoms mainly arise from the HTCs with a maximum injection rate of 0.71 tons solâ1 spanning from perihelion to the northern winter. In contrast, the minimum mass and ablated inputs occur between the maximum vertical distance above the ecliptic plane and aphelion with 1.50 and 0.42 tons solâ1, respectively. Meteoric ablation occurs approximately in the range altitude between 100 and 60 km with a strong midnight-to-noon enhancement at equatorial latitudes. The eccentricity and the inclination of Mars' orbit produces a significant shift of the ablation peak altitude at high latitudes as Mars moves toward, or away, from the northern/southern solstices
- âŚ