507 research outputs found

    The Guilty (Silicon) Mind: Blameworthiness and Liability in Human-Machine Teaming

    Full text link
    As human science pushes the boundaries towards the development of artificial intelligence (AI), the sweep of progress has caused scholars and policymakers alike to question the legality of applying or utilising AI in various human endeavours. For example, debate has raged in international scholarship about the legitimacy of applying AI to weapon systems to form lethal autonomous weapon systems (LAWS). Yet the argument holds true even when AI is applied to a military autonomous system that is not weaponised: how does one hold a machine accountable for a crime? What about a tort? Can an artificial agent understand the moral and ethical content of its instructions? These are thorny questions, and in many cases these questions have been answered in the negative, as artificial entities lack any contingent moral agency. So what if the AI is not alone, but linked with or overseen by a human being, with their own moral and ethical understandings and obligations? Who is responsible for any malfeasance that may be committed? Does the human bear the legal risks of unethical or immoral decisions by an AI? These are some of the questions this manuscript seeks to engage with

    Dynamical hologram generation for high speed optical trapping of smart droplet microtools

    Get PDF
    This paper demonstrates spatially selective sampling of the plasma membrane by the implementation of time-multiplexed holographic optical tweezers for Smart Droplet Microtools (SDMs). High speed (>1000fps) dynamical hologram generation was computed on the graphics processing unit of a standard display card and controlled by a user friendly LabView interface. Time multiplexed binary holograms were displayed in real time and mirrored to a ferroelectric Spatial Light Modulator. SDMs were manufactured with both liquid cores (as previously described) and solid cores, which confer significant advantages in terms of stability, polydispersity and ease of use. These were coated with a number of detergents, the most successful based upon lipids doped with transfection reagents. In order to validate these, trapped SDMs were maneuvered up to the plasma membrane of giant vesicles containing Nile Red and human biliary epithelial (BE) colon cancer cells with green fluorescent labeled protein (GFP)-labeled CAAX (a motif belonging to the Ras protein). Bright field and fluorescence images showed that successful trapping and manipulation of multiple SDMs in x, y, z was achieved with success rates of 30-50% and that subsequent membrane-SDM interactions led to the uptake of Nile Red or GFP-CAAX into the SDM

    GWAS Identifies 44 Independent Associated Genomic Loci for Self-Reported Adult Hearing Difficulty in UK Biobank

    Get PDF
    Age-related hearing impairment (ARHI) is the most common sensory impairment in the aging population; a third of individuals are affected by disabling hearing loss by the age of 65. It causes social isolation and depression and has recently been identified as a risk factor for dementia. The genetic risk factors and underlying pathology of ARHI are largely unknown, meaning that targets for new therapies remain elusive, yet heritability estimates range between 35% and 55%. We performed genome-wide association studies (GWASs) for two self-reported hearing phenotypes, using more than 250,000 UK Biobank (UKBB) volunteers aged between 40 and 69 years. Forty-four independent genome-wide significant loci (p < 5E−08) were identified, considerably increasing the number of established trait loci. Thirty-four loci are novel associations with hearing loss of any form, and only one of the ten known hearing loci has a previously reported association with an ARHI-related trait. Gene sets from these loci are enriched in auditory processes such as synaptic activities, nervous system processes, inner ear morphology, and cognition, while genetic correlation analysis revealed strong positive correlations with multiple personality and psychological traits for the first time. Immunohistochemistry for protein localization in adult mouse cochlea implicate metabolic, sensory, and neuronal functions for NID2, CLRN2, and ARHGEF28. These results provide insight into the genetic landscape underlying ARHI, opening up novel therapeutic targets for further investigation. In a wider context, our study also highlights the viability of using self-report phenotypes for genetic discovery in very large samples when deep phenotyping is unavailable

    Increased auditory cortex neural response amplitude in adults with chronic unilateral conductive hearing impairment

    Get PDF
    Animal studies have demonstrated that unilateral hearing loss can induce changes in neural response amplitude of the mature central auditory system (CAS). However, there is limited physiological evidence of these neural gain changes in the auditory cortex of human adults. The present study investigated the impact of chronic, unilateral conductive hearing impairment on cortical auditory evoked potentials (CAEPs) recorded from 15 adults (21-65 years old) in response to a 1 kHz tone (80 ms duration) presented to the impaired ear via a bone conduction transducer. The amplitude and latency of the main CAEP components were compared to those obtained from normal hearing age-matched control participants. Both P1-N1 and N1-P2 amplitudes were significantly larger in the hearing impaired relative to the control participants. Differences between groups in the mean latencies of P1, N1, and P2 were not statistically significant. These results are the first to provide direct evidence of increased neural response amplitude in the adult human auditory cortex in the presence of unilateral conductive hearing loss. Importantly, the study shows that central gain changes are a direct result of deprivation of sound rather than cochlear or neural pathology

    SMMT - Scalable Mobility Modeling Tool

    Get PDF

    Pneumococcal Colonization and Virulence Factors Identified Via Experimental Evolution in Infection Models

    Get PDF
    Streptococcus pneumoniae is a commensal of the human nasopharynx and a major cause of respiratory and invasive disease. We examined adaptation and evolution of pneumococcus, within nasopharynx and lungs, in an experimental system where the selective pressures associated with transmission were removed. This was achieved by serial passage of pneumococci, separately, in mouse models of nasopharyngeal carriage or pneumonia. Passaged pneumococci became more effective colonizers of the respiratory tract and we observed several examples of potential parallel evolution. The cell wall-modifying glycosyltransferase LafA was under strong selection during lung passage, whereas the surface expressed pneumococcal vaccine antigen gene pvaA and the glycerol-3-phosphate dehydrogenase gene gpsA were frequent targets of mutation in nasopharynx-passaged pneumococci. These mutations were not identified in pneumococci that were separately evolved by serial passage on laboratory agar. We focused on gpsA, in which the same single nucleotide polymorphism arose in two independently evolved nasopharynx-passaged lineages. We describe a new role for this gene in nasopharyngeal carriage and show that the identified single nucleotide change confers resistance to oxidative stress and enhanced nasopharyngeal colonization potential. We demonstrate that polymorphisms in gpsA arise and are retained during human colonization. These findings highlight how within-host environmental conditions can determine trajectories of bacterial evolution. Relative invasiveness or attack rate of pneumococcal lineages may be defined by genes that make niche-specific contributions to bacterial fitness. Experimental evolution in animal infection models is a powerful tool to investigate the relative roles played by pathogen virulence and colonization factors within different host niches

    Predicting language diversity with complex network

    Full text link
    Evolution and propagation of the world's languages is a complex phenomenon, driven, to a large extent, by social interactions. Multilingual society can be seen as a system of interacting agents, where the interaction leads to a modification of the language spoken by the individuals. Two people can reach the state of full linguistic compatibility due to the positive interactions, like transfer of loanwords. But, on the other hand, if they speak entirely different languages, they will separate from each other. These simple observations make the network science the most suitable framework to describe and analyze dynamics of language change. Although many mechanisms have been explained, we lack a qualitative description of the scaling behavior for different sizes of a population. Here we address the issue of the language diversity in societies of different sizes, and we show that local interactions are crucial to capture characteristics of the empirical data. We propose a model of social interactions, extending the idea from, that explains the growth of the language diversity with the size of a population of country or society. We argue that high clustering and network disintegration are the most important characteristics of models properly describing empirical data. Furthermore, we cancel the contradiction between previous models and the Solomon Islands case. Our results demonstrate the importance of the topology of the network, and the rewiring mechanism in the process of language change

    Adherence to self-administered tuberculosis treatment in a high HIV-prevalence setting: a cross-sectional survey in Homa Bay, Kenya.

    Get PDF
    Good adherence to treatment is crucial to control tuberculosis (TB). Efficiency and feasibility of directly observed therapy (DOT) under routine program conditions have been questioned. As an alternative, Médecins sans Frontières introduced self-administered therapy (SAT) in several TB programs. We aimed to measure adherence to TB treatment among patients receiving TB chemotherapy with fixed dose combination (FDC) under SAT at the Homa Bay district hospital (Kenya). A second objective was to compare the adherence agreement between different assessment tools

    Hybrid Model for the Analysis of Human Gait: A Non-linear Approach

    Get PDF
    In this work, a generalization of the study of the human gait was made from already existent models in the literature, like models of Keller and Kockshenev. In this hybrid model, a strategy of metabolic energy minimization is combined in a race process, with a non-linear description of the movement of the mass center’s libration, trying to reproduce the behavior of the walk-run transition. The results of the experimental data, for different speed regimes, indicate that the perimeter of the trajectory of the mass center is a relevant quantity in the quantification of this dynamic. An experimental procedure was put into practice in collaboration with the research group in Biomedical Engineering, Basic Sciences and Laboratories of the Manuela Beltrán University in Bogotá, Colombia

    Web- and app-based tools for remote hearing assessment: a scoping review

    Get PDF
    Objective: Remote hearing screening and assessment may improve access to, and uptake of, hearing care. This review, the most comprehensive to date, aimed to (i) identify and assess functionality of remote hearing assessment tools on smartphones and online platforms, (ii) determine if assessed tools were also evaluated in peer-reviewed publications and (iii) report accuracy of existing validation data. Design: Protocol was registered in INPLASY and reported according to PRISMA-Extension for Scoping Reviews. Study sample: In total, 187 remote hearing assessment tools (using tones, speech, self-report or a combination) and 101 validation studies met the inclusion criteria. Quality, functionality, bias and applicability of each app were assessed by at least two authors. Results: Assessed tools showed considerable variability in functionality. Twenty-two (12%) tools were peer-reviewed and 14 had acceptable functionality. The validation results and their quality varied greatly, largely depending on the category of the tool. Conclusion: The accuracy and reliability of most tools are unknown. Tone-producing tools provide approximate hearing thresholds but have calibration and background noise issues. Speech and self-report tools are less affected by these issues but mostly do not provide an estimated pure tone audiogram. Predicting audiograms using filtered language-independent materials could be a universal solution
    • …
    corecore