75 research outputs found

    Depleted 15N in hydrolysable-N of arctic soils and its implication for mycorrhizal fungi–plant interaction

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 97 (2009): 183-194, doi:10.1007/s10533-009-9365-1.Uptake of nitrogen (N) via root-mycorrhizal associations accounts for a significant portion of total N supply to many vascular plants. Using stable isotope ratios (δ15N) and the mass balance among N pools of plants, fungal tissues, and soils, a number of efforts have been made in recent years to quantify the flux of N from mycorrhizal fungi to host plants. Current estimates of this flux for arctic tundra ecosystems rely on the untested assumption that the δ15N of labile organic N taken up by the fungi is approximately the same as the δ15N of bulk soil. We report here hydrolysable amino acids are more depleted in 15N relative to hydrolysable ammonium and amino sugars in arctic tundra soils near Toolik Lake, Alaska, USA. We demonstrate, using a case study, that recognizing the depletion in 15N for hydrolysable amino acids (δ15N = -5.6 ‰ on average) would alter recent estimates of N flux between mycorrhizal fungi and host plants in an arctic tundra ecosystem.This study was funded by NSF-DEB-0423385and NSF-DEB 0444592. Additional support was provided by Arctic Long Term Ecological Research program, funded by National Science Foundation, Division of Environmental Biology

    The Satellite Cell in Male and Female, Developing and Adult Mouse Muscle: Distinct Stem Cells for Growth and Regeneration

    Get PDF
    Satellite cells are myogenic cells found between the basal lamina and the sarcolemma of the muscle fibre. Satellite cells are the source of new myofibres; as such, satellite cell transplantation holds promise as a treatment for muscular dystrophies. We have investigated age and sex differences between mouse satellite cells in vitro and assessed the importance of these factors as mediators of donor cell engraftment in an in vivo model of satellite cell transplantation. We found that satellite cell numbers are increased in growing compared to adult and in male compared to female adult mice. We saw no difference in the expression of the myogenic regulatory factors between male and female mice, but distinct profiles were observed according to developmental stage. We show that, in contrast to adult mice, the majority of satellite cells from two week old mice are proliferating to facilitate myofibre growth; however a small proportion of these cells are quiescent and not contributing to this growth programme. Despite observed changes in satellite cell populations, there is no difference in engraftment efficiency either between satellite cells derived from adult or pre-weaned donor mice, male or female donor cells, or between male and female host muscle environments. We suggest there exist two distinct satellite cell populations: one for muscle growth and maintenance and one for muscle regeneration

    Aerosols in the Pre-industrial Atmosphere

    Get PDF
    Purpose of Review: We assess the current understanding of the state and behaviour of aerosols under pre-industrial conditions and the importance for climate. Recent Findings: Studies show that the magnitude of anthropogenic aerosol radiative forcing over the industrial period calculated by climate models is strongly affected by the abundance and properties of aerosols in the pre-industrial atmosphere. The low concentration of aerosol particles under relatively pristine conditions means that global mean cloud albedo may have been twice as sensitive to changes in natural aerosol emissions under pre-industrial conditions compared to present-day conditions. Consequently, the discovery of new aerosol formation processes and revisions to aerosol emissions have large effects on simulated historical aerosol radiative forcing. Summary: We review what is known about the microphysical, chemical, and radiative properties of aerosols in the pre-industrial atmosphere and the processes that control them. Aerosol properties were controlled by a combination of natural emissions, modification of the natural emissions by human activities such as land-use change, and anthropogenic emissions from biofuel combustion and early industrial processes. Although aerosol concentrations were lower in the pre-industrial atmosphere than today, model simulations show that relatively high aerosol concentrations could have been maintained over continental regions due to biogenically controlled new particle formation and wildfires. Despite the importance of pre-industrial aerosols for historical climate change, the relevant processes and emissions are given relatively little consideration in climate models, and there have been very few attempts to evaluate them. Consequently, we have very low confidence in the ability of models to simulate the aerosol conditions that form the baseline for historical climate simulations. Nevertheless, it is clear that the 1850s should be regarded as an early industrial reference period, and the aerosol forcing calculated from this period is smaller than the forcing since 1750. Improvements in historical reconstructions of natural and early anthropogenic emissions, exploitation of new Earth system models, and a deeper understanding and evaluation of the controlling processes are key aspects to reducing uncertainties in future

    20th Century trends and budget implications of trihalomethanes and dihalomethanes inferred from North GRIP firn air

    No full text
    International audienceFour trihalomethane (THM; CHCl3, CHBrCl2, CHBr2Cl and CHBr3) and two dihalomethane (DHM; CH2BrCl and CH2Br2) trace gases have been measured in air extracted from polar firn collected at the North Greenland Icecore Project (NGRIP) site. CHCl3 was also measured in firn air from Devon Island (DI), Canada, Dronning Maud Land (DML), Antarctica and Dome Concordia (Dome C), Antarctica. All of these species are believed to be almost entirely of natural origin except for CHCl3 where anthropogenic sources have been reported to contribute ~10% to the global burden. A 2-D atmospheric model was run for CHCl3 using reported emission estimates to produce historical atmospheric trends at the three firn sites, which were then input into a firn diffusion model to produce concentration depth profiles that were compared against the measurements. The anthropogenic emissions were modified in order to give the best model fit to the firn data at NGRIP, Dome C and DML. As a result, the contribution of CHCl3 from anthropogenic sources, mainly from pulp and paper manufacture, to the total chloroform budget appears to have been considerably underestimated and was likely to have been close to ~40% at the maximum in atmospheric CHCl3 concentrations around 1990, declining to ~19% at the beginning of the 21st Century. We also show that the atmospheric burden of the brominated THM's in the northern hemisphere have increased over the 20th Century while CH2Br2 has remained constant over time implying that it is entirely of natural origin

    Magnets tackle kinetic questions

    No full text
    • …
    corecore