90 research outputs found

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Global and local sea level during the Last Interglacial: A probabilistic assessment

    Full text link
    The Last Interglacial (LIG) stage, with polar temperatures likely 3-5 C warmer than today, serves as a partial analogue for low-end future warming scenarios. Based upon a small set of local sea level indicators, the Intergovernmental Panel on Climate Change (IPCC) inferred that LIG global sea level (GSL) was about 4-6 m higher than today. However, because local sea levels differ from GSL, accurately reconstructing past GSL requires an integrated analysis of globally distributed data sets. Here we compile an extensive database of sea level indicators and apply a novel statistical approach that couples Gaussian process regression of sea level to Markov Chain Monte Carlo modeling of geochronological errors. Our analysis strongly supports the hypothesis that LIG GSL was higher than today, probably peaking at 6-9 m. Our results highlight the sea level hazard associated with even relatively low levels of sustained global warming.Comment: Preprint version of what has since been published in Natur

    Biogeographic problem-solving reveals the Late Pleistocene translocation of a short-faced bear to the California Channel Islands

    Get PDF
    An accurate understanding of biodiversity of the past is critical for contextualizing biodiversity patterns and trends in the present. Emerging techniques are refining our ability to decipher otherwise cryptic human-mediated species translocations across the Quaternary, yet these techniques are often used in isolation, rather than part of an interdisciplinary hypothesis-testing toolkit, limiting their scope and application. Here we illustrate the use of such an integrative approach and report the occurrence of North America’s largest terrestrial mammalian carnivore, the short-faced bear, Arctodus simus, from Daisy Cave (CA-SMI-261), an important early human occupation site on the California Channel Islands. We identified the specimen by corroborating morphological, protein, and mitogenomic lines of evidence, and evaluated the potential natural and anthropogenic mechanisms of its transport and deposition. While representing just a single specimen, our combination of techniques opened a window into the behavior of an enigmatic species, suggesting that A. simus was a wide-ranging scavenger utilizing terrestrial and marine carcasses. This discovery highlights the utility of bridging archaeological and paleontological datasets to disentangle complex biogeographic scenarios and reveal unexpected biodiversity for island systems worldwide.Open Access fees paid for in whole or in part by the University of Oklahoma Libraries Radiocarbon and isotope laboratory work was supported in part by the NSF Archaeometry Program BCS-1460369 (to D.J.K. and B.J.C). M.B was supported by a Royal Society fellowship. Additional funding was provided by the University of Oklahoma, the University of Oregon, and the Smithsonian Institution.Ye

    The Foundations of Constructions in Dobrogea—Romania, on Water Sensitive Soils, Loess

    No full text
    corecore