482 research outputs found

    Relationships between working memory, expressive vocabulary and arithmetical reasoning in children with and without intellectual disabilities.

    Get PDF
    This experiment examined the relationships between working memory and two measures of achievement, namely expressive vocabulary and arithmetical reasoning, in children with and without intellectual disabilities (ID). For 11-12-year-old children with intellectual disabilities, memory measures tapping the central executive were the most important predictors of both expressive vocabulary and arithmetical reasoning, with phonological memory making a small additional contribution to expressive vocabulary. For mainstream 11-12-year-old children, phonological memory was the best predictor of expressive vocabulary, whereas, arithmetical reasoning ability was predicted by visual memory and to a lesser extent phonological memory. The third group of children, 7-8-year-old mainstream children, had been matched on mental age with the intellectual disability group. For these children the most important predictor of expressive vocabulary was phonological memory, with a small additional contribution from visual memory. Arithmetical reasoning was best predicted by memory measures tapping the central executive with an additional contribution from phonological memory. These results suggest that different working memory resources are used by children of varying ages and ability levels to carry out at least some cognitive tasks

    Differences in need for antihypertensive drugs among those aware and unaware of their hypertensive status: a cross sectional survey

    Get PDF
    BACKGROUND: Lack of antihypertensive use among hypertensive individuals is a major public health problem. It remains unclear as to how much of this lack of treatment is because of failure to diagnose hypertension or failure to initiate drug treatment for those with a diagnosis of hypertension. The primary aim of this study was to determine the proportion of those untreated individuals who would be recommended to start drug therapy for control of blood pressure among those aware or unaware of their diagnosis of hypertension. METHODS: The Canadian Heart Health Surveys (1986 – 1992), a national, cross-sectional descriptive survey (n = 23 129), was used to determine the proportion of individuals who were untreated, yet satisfied the 2004 Canadian hypertension guidelines for initiating drug therapy. Patients were divided into subgroups of those aware and unaware of having a diagnosis of hypertension according to self reported awareness from the survey. RESULTS: Of those with untreated hypertension (= 140/90 mmHg), only 37% were aware of their diagnosis. 74% of untreated individuals aware of their diagnosis of hypertension would require drug therapy, compared to 57% of those who were unaware. Of those >65 years of age, 52% of aware individuals needed drug therapy whereas only 34% of unaware elderly would need drug treatment. CONCLUSION: In both unaware and aware subgroups, the majority of patients with untreated hypertension would benefit from antihypertensive drug therapy according to the 2004 Canadian Hypertension recommendations. The proportion of untreated patients that still need drug therapy was higher among those who were aware compared to those who were unaware. This finding suggests that the major gap in hypertension control may be in initiating drug therapy rather than in diagnosing hypertension. Further studies are needed to confirm these results to ultimately help strategize public health efforts in controlling hypertension

    The Distribution of Fitness Effects of Beneficial Mutations in Pseudomonas aeruginosa

    Get PDF
    Understanding how beneficial mutations affect fitness is crucial to our understanding of adaptation by natural selection. Here, using adaptation to the antibiotic rifampicin in the opportunistic pathogen Pseudomonas aeruginosa as a model system, we investigate the underlying distribution of fitness effects of beneficial mutations on which natural selection acts. Consistent with theory, the effects of beneficial mutations are exponentially distributed where the fitness of the wild type is moderate to high. However, when the fitness of the wild type is low, the data no longer follow an exponential distribution, because many beneficial mutations have large effects on fitness. There is no existing population genetic theory to explain this bias towards mutations of large effects, but it can be readily explained by the underlying biochemistry of rifampicin–RNA polymerase interactions. These results demonstrate the limitations of current population genetic theory for predicting adaptation to severe sources of stress, such as antibiotics, and they highlight the utility of integrating statistical and biophysical approaches to adaptation

    Monotonicity of Fitness Landscapes and Mutation Rate Control

    Get PDF
    A common view in evolutionary biology is that mutation rates are minimised. However, studies in combinatorial optimisation and search have shown a clear advantage of using variable mutation rates as a control parameter to optimise the performance of evolutionary algorithms. Much biological theory in this area is based on Ronald Fisher's work, who used Euclidean geometry to study the relation between mutation size and expected fitness of the offspring in infinite phenotypic spaces. Here we reconsider this theory based on the alternative geometry of discrete and finite spaces of DNA sequences. First, we consider the geometric case of fitness being isomorphic to distance from an optimum, and show how problems of optimal mutation rate control can be solved exactly or approximately depending on additional constraints of the problem. Then we consider the general case of fitness communicating only partial information about the distance. We define weak monotonicity of fitness landscapes and prove that this property holds in all landscapes that are continuous and open at the optimum. This theoretical result motivates our hypothesis that optimal mutation rate functions in such landscapes will increase when fitness decreases in some neighbourhood of an optimum, resembling the control functions derived in the geometric case. We test this hypothesis experimentally by analysing approximately optimal mutation rate control functions in 115 complete landscapes of binding scores between DNA sequences and transcription factors. Our findings support the hypothesis and find that the increase of mutation rate is more rapid in landscapes that are less monotonic (more rugged). We discuss the relevance of these findings to living organisms

    Intra-cluster correlation coefficients in adults with diabetes in primary care practices: the Vermont Diabetes Information System field survey

    Get PDF
    BACKGROUND: Proper estimation of sample size requirements for cluster-based studies requires estimates of the intra-cluster correlation coefficient (ICC) for the variables of interest. METHODS: We calculated the ICC for 112 variables measured as part of the Vermont Diabetes Information System, a cluster-randomized study of adults with diabetes from 73 primary care practices (the clusters) in Vermont and surrounding areas. RESULTS: ICCs varied widely around a median value of 0.0185 (Inter-quartile range: 0.006, 0.037). Some characteristics (such as the proportion having a recent creatinine measurement) were highly associated with the practice (ICC = 0.288), while others (prevalence of some comorbidities and complications and certain aspects of quality of life) varied much more across patients with only small correlation within practices (ICC<0.001). CONCLUSION: The ICC values reported here may be useful in designing future studies that use clustered sampling from primary care practices

    Pain assessment for people with dementia: a systematic review of systematic reviews of pain assessment tools.

    Get PDF
    BACKGROUND: There is evidence of under-detection and poor management of pain in patients with dementia, in both long-term and acute care. Accurate assessment of pain in people with dementia is challenging and pain assessment tools have received considerable attention over the years, with an increasing number of tools made available. Systematic reviews on the evidence of their validity and utility mostly compare different sets of tools. This review of systematic reviews analyses and summarises evidence concerning the psychometric properties and clinical utility of pain assessment tools in adults with dementia or cognitive impairment. METHODS: We searched for systematic reviews of pain assessment tools providing evidence of reliability, validity and clinical utility. Two reviewers independently assessed each review and extracted data from them, with a third reviewer mediating when consensus was not reached. Analysis of the data was carried out collaboratively. The reviews were synthesised using a narrative synthesis approach. RESULTS: We retrieved 441 potentially eligible reviews, 23 met the criteria for inclusion and 8 provided data for extraction. Each review evaluated between 8 and 13 tools, in aggregate providing evidence on a total of 28 tools. The quality of the reviews varied and the reporting often lacked sufficient methodological detail for quality assessment. The 28 tools appear to have been studied in a variety of settings and with varied types of patients. The reviews identified several methodological limitations across the original studies. The lack of a 'gold standard' significantly hinders the evaluation of tools' validity. Most importantly, the samples were small providing limited evidence for use of any of the tools across settings or populations. CONCLUSIONS: There are a considerable number of pain assessment tools available for use with the elderly cognitive impaired population. However there is limited evidence about their reliability, validity and clinical utility. On the basis of this review no one tool can be recommended given the existing evidence

    Bioavailability in soils

    Get PDF
    The consumption of locally-produced vegetables by humans may be an important exposure pathway for soil contaminants in many urban settings and for agricultural land use. Hence, prediction of metal and metalloid uptake by vegetables from contaminated soils is an important part of the Human Health Risk Assessment procedure. The behaviour of metals (cadmium, chromium, cobalt, copper, mercury, molybdenum, nickel, lead and zinc) and metalloids (arsenic, boron and selenium) in contaminated soils depends to a large extent on the intrinsic charge, valence and speciation of the contaminant ion, and soil properties such as pH, redox status and contents of clay and/or organic matter. However, chemistry and behaviour of the contaminant in soil alone cannot predict soil-to-plant transfer. Root uptake, root selectivity, ion interactions, rhizosphere processes, leaf uptake from the atmosphere, and plant partitioning are important processes that ultimately govern the accumulation ofmetals and metalloids in edible vegetable tissues. Mechanistic models to accurately describe all these processes have not yet been developed, let alone validated under field conditions. Hence, to estimate risks by vegetable consumption, empirical models have been used to correlate concentrations of metals and metalloids in contaminated soils, soil physico-chemical characteristics, and concentrations of elements in vegetable tissues. These models should only be used within the bounds of their calibration, and often need to be re-calibrated or validated using local soil and environmental conditions on a regional or site-specific basis.Mike J. McLaughlin, Erik Smolders, Fien Degryse, and Rene Rietr

    The Genetics of Adaptation for Eight Microvirid Bacteriophages

    Get PDF
    Theories of adaptive molecular evolution have recently experienced significant expansion, and their predictions and assumptions have begun to be subjected to rigorous empirical testing. However, these theories focus largely on predicting the first event in adaptive evolution, the fixation of a single beneficial mutation. To address long-term adaptation it is necessary to include new assumptions, but empirical data are needed for guidance. To empirically characterize the general properties of adaptive walks, eight recently isolated relatives of the single-stranded DNA (ssDNA) bacteriophage φX174 (family Microviridae) were adapted to identical selective conditions. Three of the eight genotypes were adapted in replicate, for a total of 11 adaptive walks. We measured fitness improvement and identified the genetic changes underlying the observed adaptation. Nearly all phages were evolvable; nine of the 11 lineages showed a significant increase in fitness. However, fitness plateaued quickly, and adaptation was achieved through only three substitutions on average. Parallel evolution was rampant, both across replicates of the same genotype as well as across different genotypes, yet adaptation of replicates never proceeded through the exact same set of mutations. Despite this, final fitnesses did not vary significantly among replicates. Final fitnesses did vary significantly across genotypes but not across phylogenetic groupings of genotypes. A positive correlation was found between the number of substitutions in an adaptive walk and the magnitude of fitness improvement, but no correlation was found between starting and ending fitness. These results provide an empirical framework for future adaptation theory

    Short clones or long clones? A simulation study on the use of paired reads in metagenomics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metagenomics is the study of environmental samples using sequencing. Rapid advances in sequencing technology are fueling a vast increase in the number and scope of metagenomics projects. Most metagenome sequencing projects so far have been based on Sanger or Roche-454 sequencing, as only these technologies provide long enough reads, while Illumina sequencing has not been considered suitable for metagenomic studies due to a short read length of only 35 bp. However, now that reads of length 75 bp can be sequenced in pairs, Illumina sequencing has become a viable option for metagenome studies.</p> <p>Results</p> <p>This paper addresses the problem of taxonomical analysis of paired reads. We describe a new feature of our metagenome analysis software MEGAN that allows one to process sequencing reads in pairs and makes assignments of such reads based on the combined bit scores of their matches to reference sequences. Using this new software in a simulation study, we investigate the use of Illumina paired-sequencing in taxonomical analysis and compare the performance of single reads, short clones and long clones. In addition, we also compare against simulated Roche-454 sequencing runs.</p> <p>Conclusion</p> <p>This work shows that paired reads perform better than single reads, as expected, but also, perhaps slightly less obviously, that long clones allow more specific assignments than short ones. A new version of the program MEGAN that explicitly takes paired reads into account is available from our website.</p

    Read Length and Repeat Resolution: Exploring Prokaryote Genomes Using Next-Generation Sequencing Technologies

    Get PDF
    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50 % of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism unde
    corecore