75 research outputs found

    White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): Knowledge gaps and opportunities

    Get PDF
    White matter hyperintensities (WMHs) are frequently seen on brain magnetic resonance imaging scans of older people. Usually interpreted clinically as a surrogate for cerebral small vessel disease, WMHs are associated with increased likelihood of cognitive impairment and dementia (including Alzheimer's disease [AD]). WMHs are also seen in cognitively healthy people. In this collaboration of academic, clinical, and pharmaceutical industry perspectives, we identify outstanding questions about WMHs and their relation to cognition, dementia, and AD. What molecular and cellular changes underlie WMHs? What are the neuropathological correlates of WMHs? To what extent are demyelination and inflammation present? Is it helpful to subdivide into periventricular and subcortical WMHs? What do WMHs signify in people diagnosed with AD? What are the risk factors for developing WMHs? What preventive and therapeutic strategies target WMHs? Answering these questions will improve prevention and treatment of WMHs and dementia

    Efficient Parallel Strategy Improvement for Parity Games

    Get PDF
    We study strategy improvement algorithms for solving parity games. While these algorithms are known to solve parity games using a very small number of iterations, experimental studies have found that a high step complexity causes them to perform poorly in practice. In this paper we seek to address this situation. Every iteration of the algorithm must compute a best response, and while the standard way of doing this uses the Bellman-Ford algorithm, we give experimental results that show that one-player strategy improvement significantly outperforms this technique in practice. We then study the best way to implement one-player strategy improvement, and we develop an efficient parallel algorithm for carrying out this task, by reducing the problem to computing prefix sums on a linked list. We report experimental results for these algorithms, and we find that a GPU implementation of this algorithm shows a significant speedup over single-core and multi-core CPU implementations

    Dietary fat increases solid tumor growth and metastasis of 4T1 murine mammary carcinoma cells and mortality in obesity-resistant BALB/c mice

    Get PDF
    Introduction High-fat diets (HFDs) are known to cause obesity and are associated with breast cancer progression and metastasis. Because obesity is associated with breast cancer progression, it is important to determine whether dietary fat per se stimulates breast cancer progression in the absence of obesity. This study investigated whether an HFD increases breast cancer growth and metastasis, as well as mortality, in obesity-resistant BALB/c mice. Methods The 4-week-old, female BALB/c mice were fed HFD (60% kcal fat) or control diet (CD, 10% kcal fat) for 16 weeks. Subsequently, 4T1 mammary carcinoma cells were injected into the inguinal mammary fat pads of mice fed continuously on their respective diets. Cell-cycle progression, angiogenesis, and immune cells in tumor tissues, proteases and adhesion molecules in the lungs, and serum cytokine levels were analyzed with immunohistochemistry, Western blotting, and enzyme-linked immunosorbent assay (ELISA). In vitro studies were also conducted to evaluate the effects of cytokines on 4T1 cell viability, migration, and adhesion. Results Spleen and gonadal fat-pad weights, tumor weight, the number and volume of tumor nodules in the lung and liver, and tumor-associated mortality were increased in the HFD group, with only slight increases in energy intake and body weight. HF feeding increased macrophage infiltration into adipose tissues, the number of lipid vacuoles and the expression of cyclin-dependent kinase (CDK)2, cyclin D1, cyclin A, Ki67, CD31, CD45, and CD68 in the tumor tissues, and elevated serum levels of complement fragment 5a (C5a), interleukin (IL)-16, macrophage colony-stimulating factor (M-CSF), soluble intercellular adhesion molecule (sICAM)-1, tissue inhibitors of metalloproteinase (TIMP)-1, leptin, and triggering receptor expressed on myeloid cells (TREM)-1. Protein levels of the urokinase-type plasminogen activator, ICAM-1, and vascular cell adhesion molecule-1 were increased, but plasminogen activator inhibitor-1 levels were decreased in the lungs of the HFD group. In vitro assays using 4T1 cells showed that sICAM-1 increased viability; TREM-1, TIMP-1, M-CSF, and sICAM-1 increased migration; and C5a, sICAM-1, IL-16, M-CSF, TIMP-1, and TREM-1 increased adhesion. Conclusions Dietary fat increases mammary tumor growth and metastasis, thereby increasing mortality in obesity-resistant mice

    Patient-provider interaction from the perspectives of type 2 diabetes patients in Muscat, Oman: a qualitative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients' expectations and perceptions of the medical encounter and interactions are important tools in diabetes management. Some problems regarding the interaction during encounters may be related to a lack of communication skills on the part of either the physician or the patient.</p> <p>This study aimed at exploring the perceptions of type 2 diabetes patients regarding the medical encounters and quality of interactions with their primary health-care providers.</p> <p>Methods</p> <p>Four focus group discussions (two women and two men groups) were conducted among 27 purposively selected patients (13 men and 14 women) from six primary health-care centres in Muscat, Oman. Qualitative content analysis was applied.</p> <p>Results</p> <p>The patients identified some weaknesses regarding the patient-provider communication like: unfriendly welcoming; interrupted consultation privacy; poor attention and eye contact; lack of encouraging the patients to ask questions on the providers' side; and inability to participate in medical dialogue or express concerns on the patients' side. Other barriers and difficulties related to issues of patient-centeredness, organization of diabetes clinics, health education and professional competency regarding diabetes care were also identified.</p> <p>Conclusion</p> <p>The diabetes patients' experiences with the primary health-care providers showed dissatisfaction with the services. We suggest appropriate training for health-care providers with regard to diabetes care and developing of communication skills with emphasis on a patient-centred approach. An efficient use of available resources in diabetes clinics and distributing responsibilities between team members in close collaboration with patients and their families seems necessary. Further exploration of the providers' work situation and barriers to good interaction is needed. Our findings can help the policy makers in Oman, and countries with similar health systems, to improve the quality and organizational efficiency of diabetes care services.</p

    Functional Copy-Number Alterations in Cancer

    Get PDF
    Understanding the molecular basis of cancer requires characterization of its genetic defects. DNA microarray technologies can provide detailed raw data about chromosomal aberrations in tumor samples. Computational analysis is needed (1) to deduce from raw array data actual amplification or deletion events for chromosomal fragments and (2) to distinguish causal chromosomal alterations from functionally neutral ones. We present a comprehensive computational approach, RAE, designed to robustly map chromosomal alterations in tumor samples and assess their functional importance in cancer. To demonstrate the methodology, we experimentally profile copy number changes in a clinically aggressive subtype of soft-tissue sarcoma, pleomorphic liposarcoma, and computationally derive a portrait of candidate oncogenic alterations and their target genes. Many affected genes are known to be involved in sarcomagenesis; others are novel, including mediators of adipocyte differentiation, and may include valuable therapeutic targets. Taken together, we present a statistically robust methodology applicable to high-resolution genomic data to assess the extent and function of copy-number alterations in cancer

    Restricting retrotransposons: a review

    Get PDF

    Methods for stable recording of short-circuit current in a Na+-transporting epithelium

    No full text
    Epithelial Na+ transport as measured by a variety of techniques, including the short-circuit current technique, has been described to exhibit a “rundown” phenomenon. This phenomenon manifests as time-dependent decrease of current and resistance and precludes the ability to carry out prolonged experiments aimed at examining the regulation of this transport. We developed methods for prolonged stable recordings of epithelial Na+ transport using modifications of the short-circuit current technique and commercial Ussing-type chambers. We utilize the polarized MDCK cell line expressing the epithelial Na+ channel (ENaC) to describe these methods. Briefly, existing commercial chambers were modified to allow continuous flow of Ringer solution and precise control of such flow. Chamber manifolds and associated plumbing were modified to allow precise temperature clamp preventing temperature oscillations. Recording electrodes were modified to eliminate the use of KCl and prevent membrane depolarization from KCl leakage. Solutions utilized standard bicarbonate-based buffers, but all gasses were prehydrated to clamp buffer osmolarity. We demonstrate that these modifications result in measurements of current and resistance that are stable for at least 2 h. We further demonstrate that drifts in osmolarity similar to those obtained before prior to our modifications can lead to a decrease of current and resistance similar to those attributed to rundown
    corecore