335 research outputs found

    Person-Thing Orientation as a Predictor of Engineering Persistence and Success

    Get PDF
    Interest, especially in the United States, is an important motivation for students in choosing a major and the strength of their commitment to remaining in that major. In the examination of engineering students’ reasons for persistence and success, interest has not received an in-depth treatment. Interest as a motivational factor can be characterized and operationalized in several ways. Engineering is often typified as a discipline that primarily deals with the creation and manipulation of man-made artefacts as opposed to a discipline centered on interpersonal interaction. For this study interest has been characterized along the Person-Thing dimension.This has been operationalized as a differential orientation to persons, distinguished by an interest in interpersonal interactions, and an orientation to things, distinguished by a desire for mastery over objects.The participants in this study are entering their fourth, and for many their final year of college.This study is a follow up to a study conducted when the participants were first-year engineering students. The initial study questioned students on their differential orientation to persons or things and about their intention to remain in engineering. That study found that engineering students tend to be higher in thing orientation than person orientation, and those students expressing a stronger orientation towards things showed more interest in continuing engineering beyond the first year, while students expressing a weaker orientation towards things more commonly expressed a desire to leave engineering. These findings were even stronger when only female students were considered.The follow up study, to be reported in this paper, explores the stability of these person-thing traits across this group of students to determine whether it is a stable part of their disposition, or whether it has changed over the course of their college education. The study also examines the success of the person-thing orientation measure in predicting students’ persistence and success in engineering. This research uses a survey administered electronically to students who were in that class of first-year engineers. Data collection is ongoing and is expected to be completed within the next two months. Approximately 500 students are expected to participate in the study. The survey questions students about whether they have since left engineering, or have remained in engineering and intend to graduate with an engineering degree. The survey also questions students as to their plans after completing college, their performance in their major, and measures their current orientation to persons and things.The survey is expected to yield profiles of students’ differential orientation to persons and things.Multivariate analysis of variance will be used to analyze the data and determine whether students’ orientations are stable or whether they changed as a result of their college experience.The predictive power of person-thing orientation to ascertain students’ persistence and success in engineering will also be determined

    Coevolved mutations reveal distinct architectures for two core proteins in the bacterial flagellar motor

    Get PDF
    Switching of bacterial flagellar rotation is caused by large domain movements of the FliG protein triggered by binding of the signal protein CheY to FliM. FliG and FliM form adjacent multi-subunit arrays within the basal body C-ring. The movements alter the interaction of the FliG C-terminal (FliGC) "torque" helix with the stator complexes. Atomic models based on the Salmonella entrovar C-ring electron microscopy reconstruction have implications for switching, but lack consensus on the relative locations of the FliG armadillo (ARM) domains (amino-terminal (FliGN), middle (FliGM) and FliGC) as well as changes during chemotaxis. The generality of the Salmonella model is challenged by the variation in motor morphology and response between species. We studied coevolved residue mutations to determine the unifying elements of switch architecture. Residue interactions, measured by their coevolution, were formalized as a network, guided by structural data. Our measurements reveal a common design with dedicated switch and motor modules. The FliM middle domain (FliMM) has extensive connectivity most simply explained by conserved intra and inter-subunit contacts. In contrast, FliG has patchy, complex architecture. Conserved structural motifs form interacting nodes in the coevolution network that wire FliMM to the FliGC C-terminal, four-helix motor module (C3-6). FliG C3-6 coevolution is organized around the torque helix, differently from other ARM domains. The nodes form separated, surface-proximal patches that are targeted by deleterious mutations as in other allosteric systems. The dominant node is formed by the EHPQ motif at the FliMMFliGM contact interface and adjacent helix residues at a central location within FliGM. The node interacts with nodes in the N-terminal FliGc α-helix triad (ARM-C) and FliGN. ARM-C, separated from C3-6 by the MFVF motif, has poor intra-network connectivity consistent with its variable orientation revealed by structural data. ARM-C could be the convertor element that provides mechanistic and species diversity.JK was supported by Medical Research Council grant U117581331. SK was supported by seed funds from Lahore University of Managment Sciences (LUMS) and the Molecular Biology Consortium

    Young neutron stars with soft gamma ray emission and anomalous X-ray pulsar

    Full text link
    The observational properties of Soft Gamma Repeaters and Ano\-malous X-ray Pulsars (SGR/AXP) indicate to necessity of the energy source different from a rotational energy of a neutron star. The model, where the source of the energy is connected with a magnetic field dissipation in a highly magnetized neutron star (magnetar) is analyzed. Some observational inconsistencies are indicated for this interpretation. The alternative energy source, connected with the nuclear energy of superheavy nuclei stored in the nonequilibrium layer of low mass neutron star is discussed.Comment: 29 pages, 13 figures, Springer International Publishing Switzerland 2016 A.W. Alsabti, P. Murdin (eds.), Handbook of Supernova

    The Role of B-cells and IgM Antibodies in Parasitemia, Anemia, and VSG Switching in Trypanosoma brucei–Infected Mice

    Get PDF
    African trypanosomes are extracellular parasitic protozoa, predominantly transmitted by the bite of the haematophagic tsetse fly. The main mechanism considered to mediate parasitemia control in a mammalian host is the continuous interaction between antibodies and the parasite surface, covered by variant-specific surface glycoproteins. Early experimental studies have shown that B-cell responses can be strongly protective but are limited by their VSG-specificity. We have used B-cell (µMT) and IgM-deficient (IgM−/−) mice to investigate the role of B-cells and IgM antibodies in parasitemia control and the in vivo induction of trypanosomiasis-associated anemia. These infection studies revealed that that the initial setting of peak levels of parasitemia in Trypanosoma brucei–infected µMT and IgM−/− mice occurred independent of the presence of B-cells. However, B-cells helped to periodically reduce circulating parasites levels and were required for long term survival, while IgM antibodies played only a limited role in this process. Infection-associated anemia, hypothesized to be mediated by B-cell responses, was induced during infection in µMT mice as well as in IgM−/− mice, and as such occurred independently from the infection-induced host antibody response. Antigenic variation, the main immune evasion mechanism of African trypanosomes, occurred independently from host antibody responses against the parasite's ever-changing antigenic glycoprotein coat. Collectively, these results demonstrated that in murine experimental T. brucei trypanosomiasis, B-cells were crucial for periodic peak parasitemia clearance, whereas parasite-induced IgM antibodies played only a limited role in the outcome of the infection

    Visual acuity and foveal thickness after vitrectomy for macular edema associated with branch retinal vein occlusion: a case series

    Get PDF
    Abstract Background The mechanism by which vitrectomy improves macular edema in patients with branch retinal vein occlusion remains unclear, although intraocular levels of vascular endothelial growth factor have been suggested to influence the visual prognosis and macular edema. Methods A series of 54 consecutive patients (54 eyes) with branch retinal vein occlusion was studied prospectively. All patients underwent pars plana vitrectomy for treatment of macular edema. Best corrected visual acuity and retinal thickness (examined by optical coherence tomography) were assessed before and after surgery. The level of vascular endothelial growth factor in vitreous fluid harvested at operation was determined. Patients were followed for at least 6 months postoperatively. Results Both the visual acuity and the retinal thickness showed significant improvement at 6 months postoperatively (P = 0.0002 and P Conclusions These results suggest that the vitreous level of vascular endothelial growth factor might influence the visual prognosis and the response of macular edema to vitrectomy in patients with branch retinal vein occlusion.</p

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure
    corecore