51,595 research outputs found
Deformable Part Models are Convolutional Neural Networks
Deformable part models (DPMs) and convolutional neural networks (CNNs) are
two widely used tools for visual recognition. They are typically viewed as
distinct approaches: DPMs are graphical models (Markov random fields), while
CNNs are "black-box" non-linear classifiers. In this paper, we show that a DPM
can be formulated as a CNN, thus providing a novel synthesis of the two ideas.
Our construction involves unrolling the DPM inference algorithm and mapping
each step to an equivalent (and at times novel) CNN layer. From this
perspective, it becomes natural to replace the standard image features used in
DPM with a learned feature extractor. We call the resulting model DeepPyramid
DPM and experimentally validate it on PASCAL VOC. DeepPyramid DPM significantly
outperforms DPMs based on histograms of oriented gradients features (HOG) and
slightly outperforms a comparable version of the recently introduced R-CNN
detection system, while running an order of magnitude faster
Congestion Control for Network-Aware Telehaptic Communication
Telehaptic applications involve delay-sensitive multimedia communication
between remote locations with distinct Quality of Service (QoS) requirements
for different media components. These QoS constraints pose a variety of
challenges, especially when the communication occurs over a shared network,
with unknown and time-varying cross-traffic. In this work, we propose a
transport layer congestion control protocol for telehaptic applications
operating over shared networks, termed as dynamic packetization module (DPM).
DPM is a lossless, network-aware protocol which tunes the telehaptic
packetization rate based on the level of congestion in the network. To monitor
the network congestion, we devise a novel network feedback module, which
communicates the end-to-end delays encountered by the telehaptic packets to the
respective transmitters with negligible overhead. Via extensive simulations, we
show that DPM meets the QoS requirements of telehaptic applications over a wide
range of network cross-traffic conditions. We also report qualitative results
of a real-time telepottery experiment with several human subjects, which reveal
that DPM preserves the quality of telehaptic activity even under heavily
congested network scenarios. Finally, we compare the performance of DPM with
several previously proposed telehaptic communication protocols and demonstrate
that DPM outperforms these protocols.Comment: 25 pages, 19 figure
Analysis and improvement of data-set level file distribution in Disk Pool Manager
Of the three most widely used implementations of the WLCG Storage Element specification, Disk Pool Manager[1, 2] (DPM) has the simplest implementation of file placement balancing (StoRM doesn't attempt this, leaving it up to the underlying filesystem, which can be very sophisticated in itself). DPM uses a round-robin algorithm (with optional filesystem weighting), for placing files across filesystems and servers. This does a reasonable job of evenly distributing files across the storage array provided to it. However, it does not offer any guarantees of the evenness of distribution of that subset of files associated with a given "dataset" (which often maps onto a "directory" in the DPM namespace (DPNS)). It is useful to consider a concept of "balance", where an optimally balanced set of files indicates that the files are distributed evenly across all of the pool nodes. The best case performance of the round robin algorithm is to maintain balance, it has no mechanism to improve balance.<p></p>
In the past year or more, larger DPM sites have noticed load spikes on individual disk servers, and suspected that these were exacerbated by excesses of files from popular datasets on those servers. We present here a software tool which analyses file distribution for all datasets in a DPM SE, providing a measure of the poorness of file location in this context. Further, the tool provides a list of file movement actions which will improve dataset-level file distribution, and can action those file movements itself. We present results of such an analysis on the UKI-SCOTGRID-GLASGOW Production DPM
High energy hadron production Monte Carlos
We discuss here Quantum molecular dynamics models (QMD) and Dual Parton
Models (DPM and QGSM). We compare RHIC data to DPM--models and we present a
(Cosmic ray oriented) model comparison.Comment: 10 pages, 7 figures, presented at Hadronic Shower simulation
workshop, FERMILAB Sept. 6-8, 200
Considerations of digital phase modulation for narrowband satellite mobile communication
The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented
Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at = 200 GeV
Forward-backward multiplicity correlation strengths have been measured with
the STAR detector for Au+Au and collisions at =
200 GeV. Strong short and long range correlations (LRC) are seen in central
Au+Au collisions. The magnitude of these correlations decrease with decreasing
centrality until only short range correlations are observed in peripheral Au+Au
collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate
(CGC) predict the existence of the long range correlations. In the DPM the
fluctuation in the number of elementary (parton) inelastic collisions produces
the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is
in qualitative agreement with the predictions from the DPM and indicates the
presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie
- …