51,595 research outputs found

    Deformable Part Models are Convolutional Neural Networks

    Full text link
    Deformable part models (DPMs) and convolutional neural networks (CNNs) are two widely used tools for visual recognition. They are typically viewed as distinct approaches: DPMs are graphical models (Markov random fields), while CNNs are "black-box" non-linear classifiers. In this paper, we show that a DPM can be formulated as a CNN, thus providing a novel synthesis of the two ideas. Our construction involves unrolling the DPM inference algorithm and mapping each step to an equivalent (and at times novel) CNN layer. From this perspective, it becomes natural to replace the standard image features used in DPM with a learned feature extractor. We call the resulting model DeepPyramid DPM and experimentally validate it on PASCAL VOC. DeepPyramid DPM significantly outperforms DPMs based on histograms of oriented gradients features (HOG) and slightly outperforms a comparable version of the recently introduced R-CNN detection system, while running an order of magnitude faster

    Congestion Control for Network-Aware Telehaptic Communication

    Full text link
    Telehaptic applications involve delay-sensitive multimedia communication between remote locations with distinct Quality of Service (QoS) requirements for different media components. These QoS constraints pose a variety of challenges, especially when the communication occurs over a shared network, with unknown and time-varying cross-traffic. In this work, we propose a transport layer congestion control protocol for telehaptic applications operating over shared networks, termed as dynamic packetization module (DPM). DPM is a lossless, network-aware protocol which tunes the telehaptic packetization rate based on the level of congestion in the network. To monitor the network congestion, we devise a novel network feedback module, which communicates the end-to-end delays encountered by the telehaptic packets to the respective transmitters with negligible overhead. Via extensive simulations, we show that DPM meets the QoS requirements of telehaptic applications over a wide range of network cross-traffic conditions. We also report qualitative results of a real-time telepottery experiment with several human subjects, which reveal that DPM preserves the quality of telehaptic activity even under heavily congested network scenarios. Finally, we compare the performance of DPM with several previously proposed telehaptic communication protocols and demonstrate that DPM outperforms these protocols.Comment: 25 pages, 19 figure

    The Population Health Revolution

    Get PDF

    Analysis and improvement of data-set level file distribution in Disk Pool Manager

    Get PDF
    Of the three most widely used implementations of the WLCG Storage Element specification, Disk Pool Manager[1, 2] (DPM) has the simplest implementation of file placement balancing (StoRM doesn't attempt this, leaving it up to the underlying filesystem, which can be very sophisticated in itself). DPM uses a round-robin algorithm (with optional filesystem weighting), for placing files across filesystems and servers. This does a reasonable job of evenly distributing files across the storage array provided to it. However, it does not offer any guarantees of the evenness of distribution of that subset of files associated with a given "dataset" (which often maps onto a "directory" in the DPM namespace (DPNS)). It is useful to consider a concept of "balance", where an optimally balanced set of files indicates that the files are distributed evenly across all of the pool nodes. The best case performance of the round robin algorithm is to maintain balance, it has no mechanism to improve balance.<p></p> In the past year or more, larger DPM sites have noticed load spikes on individual disk servers, and suspected that these were exacerbated by excesses of files from popular datasets on those servers. We present here a software tool which analyses file distribution for all datasets in a DPM SE, providing a measure of the poorness of file location in this context. Further, the tool provides a list of file movement actions which will improve dataset-level file distribution, and can action those file movements itself. We present results of such an analysis on the UKI-SCOTGRID-GLASGOW Production DPM

    High energy hadron production Monte Carlos

    Get PDF
    We discuss here Quantum molecular dynamics models (QMD) and Dual Parton Models (DPM and QGSM). We compare RHIC data to DPM--models and we present a (Cosmic ray oriented) model comparison.Comment: 10 pages, 7 figures, presented at Hadronic Shower simulation workshop, FERMILAB Sept. 6-8, 200

    Considerations of digital phase modulation for narrowband satellite mobile communication

    Get PDF
    The Inmarsat-M system for mobile satellite communication is specified as a frequency division multiple access (FDMA) system, applying Offset Quadrature Phase Shift Keying (QPSK) for transmitting 8 kbit/sec in 10 kHz user channel bandwidth. We consider Digital Phase Modulation (DPM) as an alternative modulation format for INMARSAT-M. DPM is similar to Continuous Phase Modulation (CPM) except that DPM has a finite memory in the premodular filter with a continuous varying modulation index. It is shown that DPM with 64 states in the VA obtains a lower bit error rate (BER). Results for a 5 kHz system, with the same 8 kbit/sec transmitted bitstream, is also presented

    Growth of Long Range Forward-Backward Multiplicity Correlations with Centrality in Au+Au Collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Get PDF
    Forward-backward multiplicity correlation strengths have been measured with the STAR detector for Au+Au and p+p\textit{p+p} collisions at sNN\sqrt{s_{NN}} = 200 GeV. Strong short and long range correlations (LRC) are seen in central Au+Au collisions. The magnitude of these correlations decrease with decreasing centrality until only short range correlations are observed in peripheral Au+Au collisions. Both the Dual Parton Model (DPM) and the Color Glass Condensate (CGC) predict the existence of the long range correlations. In the DPM the fluctuation in the number of elementary (parton) inelastic collisions produces the LRC. In the CGC longitudinal color flux tubes generate the LRC. The data is in qualitative agreement with the predictions from the DPM and indicates the presence of multiple parton interactions.Comment: 6 pages, 3 figures The abstract has been slightly modifie
    corecore