210 research outputs found

    VEGF attenuates development from cardiac hypertrophy to heart failure after aortic stenosis through mitochondrial mediated apoptosis and cardiomyocyte proliferation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aortic stenosis (AS) affects 3 percent of persons older than 65 years and leads to greater morbidity and mortality than other cardiac valve diseases. Surgery with aortic valve replacement (AVR) for severe symptomatic AS is currently the only treatment option. Unfortunately, in patients with poor ventricular function, the mortality and long-term outcome is unsatisfied, and only a minority of these patients could bear surgery. Our previous studies demonstrated that vascular endothelial growth factor (VEGF) protects cardiac function in myocardial infarction model through classic VEGF-PI3k-Akt and unclear mitochondrial anti-apoptosis pathways; promoting cardiomyocyte (CM) proliferation as well. The present study was designed to test whether pre-operative treatment with VEGF improves AS-induced cardiac dysfunction, to be better suitable for AVR, and its potential mechanism.</p> <p>Methods</p> <p>Adult male mice were subjected to AS or sham operation. Two weeks later, adenoviral VEGF (Ad-VEGF), enhanced green fluorescence protein (Ad-EGFP, as a parallel control) or saline was injected into left ventricle free wall. Two weeks after delivery, all mice were measured by echocardiography and harvested for further detection.</p> <p>Results</p> <p>AS for four weeks caused cardiac hypertrophy and left ventricular dysfunction. VEGF treatment increased capillary density, protected mitochondrial function, reduced CMs apoptosis, promoted CMs proliferation and eventually preserved cardiac function.</p> <p>Conclusions</p> <p>Our findings indicate that VEGF could repair AS-induced transition from compensatory cardiac hypertrophy to heart failure.</p

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome

    Selective Inhibition of Retinal Angiogenesis by Targeting PI3 Kinase

    Get PDF
    Ocular neovascularisation is a pathological hallmark of some forms of debilitating blindness including diabetic retinopathy, age related macular degeneration and retinopathy of prematurity. Current therapies for delaying unwanted ocular angiogenesis include laser surgery or molecular inhibition of the pro-angiogenic factor VEGF. However, targeting of angiogenic pathways other than, or in combination to VEGF, may lead to more effective and safer inhibitors of intraocular angiogenesis. In a small chemical screen using zebrafish, we identify LY294002 as an effective and selective inhibitor of both developmental and ectopic hyaloid angiogenesis in the eye. LY294002, a PI3 kinase inhibitor, exerts its anti-angiogenic effect in a dose-dependent manner, without perturbing existing vessels. Significantly, LY294002 delivered by intraocular injection, significantly inhibits ocular angiogenesis without systemic side-effects and without diminishing visual function. Thus, targeting of PI3 kinase pathways has the potential to effectively and safely treat neovascularisation in eye disease

    AKT inhibition is associated with chemosensitisation in the pancreatic cancer cell line MIA-PaCa-2

    Get PDF
    Activation of the serine/threonine kinase AKT is common in pancreatic cancer; inhibition of which sensitises cells to the apoptotic effect of chemotherapy. Of the various downstream targets of AKT, we examined activation of the NF-kappaB transcription factor and subsequent transcriptional regulation of BCL-2 gene family in pancreatic cancer cells. Inhibition of either phosphatidylinositol-3 kinase or AKT led to a decreased protein level of the antiapoptotic gene BCL-2 and an increased protein level of the proapoptotic gene BAX. Furthermore, inhibition of AKT decreased the function of NF-kappaB, which is capable of transcriptional regulation of the BCL-2 gene. Inhibiting this pathway had little effect on the basal level of apoptosis in pancreatic cancer cells, but increased the apoptotic effect of chemotherapy. The antiapoptotic effect of AKT activation in pancreatic cancer cells may involve transcriptional induction of a profile of BCL-2 proteins that confer resistance to apoptosis; alteration of this balance allows sensitisation to the apoptotic effect of chemotherapy

    Selective modulation of subtype III IP3R by Akt regulates ER Ca2+ release and apoptosis

    Get PDF
    Ca2+ transfer from endoplasmic reticulum (ER) to mitochondria can trigger apoptotic pathways by inducing release of mitochondrial pro-apoptotic factors. Three different types of inositol 1,4,5-trisphosphate receptor (IP3R) serve to discharge Ca2+ from ER, but possess some peculiarities, especially in apoptosis induction. The anti-apoptotic protein Akt can phosphorylate all IP3R isoforms and protect cells from apoptosis, reducing ER Ca2+ release. However, it has not been elucidated which IP3R subtypes mediate these effects. Here, we show that Akt activation in COS7 cells, which lack of IP3R I, strongly suppresses IP3-mediated Ca2+ release and apoptosis. Conversely, in SH-SY 5Y cells, which are type III-deficient, Akt is unable to modulate ER Ca2+ flux, losing its anti-apoptotic activity. In SH-SY 5Y-expressing subtype III, Akt recovers its protective function on cell death, by reduction of Ca2+ release. Moreover, regulating Ca2+ flux to mitochondria, Akt maintains the mitochondrial integrity and delays the trigger of apoptosis, in a type III-dependent mechanism. These results demonstrate a specific activity of Akt on IP3R III, leading to diminished Ca2+ transfer to mitochondria and protection from apoptosis, suggesting an additional level of cell death regulation mediated by Akt

    Integrin-Linked Kinase Overexpression and Its Oncogenic Role in Promoting Tumorigenicity of Hepatocellular Carcinoma

    Get PDF
    Background: Integrin-linked kinase (ILK) was first discovered as an integrin β1-subunit binding protein. It localizes at the focal adhesions and is involved in cytoskeleton remodeling. ILK overexpression and its dysregulated signaling cascades have been reported in many human cancers. Aberrant expression of ILK influenced a wide range of signaling pathways and cellular functions. Although ILK has been well characterized in many malignancies, its role in hepatocellular carcinoma (HCC) is still largely unknown. Methodology/Principal Findings: Quantitative PCR analysis was used to examine ILK mRNA expression in HCC clinical samples. It was shown that ILK was overexpressed in 36.9% (21/57) of HCC tissues when compared to the corresponding non-tumorous livers. The overall ILK expression level was significantly higher in tumorous tissues (P = 0.004), with a significant stepwise increase in expression level along tumor progression from tumor stage I to IV (P = 0.045). ILK knockdown stable clones were established in two HCC cell lines, BEL7402 and HLE, and were subjected to different functional assays. Knockdown of ILK significantly suppressed HCC cell growth, motility and invasion in vitro and inhibited tumorigenicity in vivo. Western blot analysis revealed a reduced phosphorylated-Akt (pAkt) at Serine-473 expression in ILK knockdown stable clones when compared to control clones. Conclusion/Significance: This study provides evidence about the clinical relevance of ILK in hepatocarcinogenesis. ILK was found to be progressively elevated along HCC progression. Here our findings also provide the first validation about the oncogenic capacity of ILK in vivo by suppressing its expression in HCC cells. The oncogenic role of ILK is implicated to be mediated by Akt pathway. © 2011 Chan et al.published_or_final_versio

    TRAIL sensitisation by arsenic trioxide is caspase-8 dependent and involves modulation of death receptor components and Akt

    Get PDF
    The majority of leukaemic cells are resistant to apoptosis induced by tumour necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we show that sublethal concentrations of arsenic trioxide (ATO) specifically enhanced TRAIL-induced apoptosis in leukaemic but not in other tumour cell lines. The combination of ATO and TRAIL synergistically enhanced cleavage of caspase-8, which was blocked by the caspase inhibitor IETD.fmk as well as in cells deficient for caspase-8, suggesting a requirement for the death-inducing signalling complex. Arsenic trioxide led to increased cell surface expression of DR5 (death receptor 5), inhibition of the serine/threonine kinase Akt and downregulation of the short isoform of FLIP (FLICE-inhibitory protein, FLIPS). Inhibition of the phosphatidylinositol 3 kinase (PI3K) was equally efficient in sensitising leukaemic cells to TRAIL with similar effects on DR5 and FLIPS expression, suggesting that ATO may in part act through inhibition of the PI3K/Akt signalling pathway. These results indicate that the enhancement in TRAIL-mediated apoptosis induced by ATO is due to alteration in the levels of multiple components and regulators of the death receptor-mediated pathway. These findings offer a promising and novel strategy involving a combination of TRAIL and ATO, or more specific Akt inhibitors in the treatment of various haematopoietic malignancies

    Mammary tumors that become independent of the type I insulin-like growth factor receptor express elevated levels of platelet-derived growth factor receptors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Targeted therapies are becoming an essential part of breast cancer treatment and agents targeting the type I insulin-like growth factor receptor (IGF-IR) are currently being investigated in clinical trials. One of the limitations of targeted therapies is the development of resistant variants and these variants typically present with unique gene expression patterns and characteristics compared to the original tumor.</p> <p>Results</p> <p>MTB-IGFIR transgenic mice, with inducible overexpression of the IGF-IR were used to model mammary tumors that develop resistance to IGF-IR targeting agents. IGF-IR independent mammary tumors, previously shown to possess characteristics associated with EMT, were found to express elevated levels of PDGFRα and PDGFRβ. Furthermore, these receptors were shown to be inversely expressed with the IGF-IR in this model. Using cell lines derived from IGF-IR-independent mammary tumors (from MTB-IGFIR mice), it was demonstrated that PDGFRα and to a lesser extent PDGFRβ was important for cell migration and invasion as RNAi knockdown of PDGFRα alone or PDGFRα and PDGFRβ in combination, significantly decreased tumor cell migration in Boyden chamber assays and suppressed cell migration in scratch wound assays. Somewhat surprisingly, concomitant knockdown of PDGFRα and PDGFRβ resulted in a modest increase in cell proliferation and a decrease in apoptosis.</p> <p>Conclusion</p> <p>During IGF-IR independence, PDGFRs are upregulated and function to enhance tumor cell motility. These results demonstrate a novel interaction between the IGF-IR and PDGFRs and highlight an important, therapeutically relevant pathway, for tumor cell migration and invasion.</p

    Synthetic sex pheromone in a long-lasting lure attracts the visceral leishmaniasis vector, lutzomyia longipalpis, for up to 12 weeks in Brazil

    Get PDF
    Current control methodologies have not prevented the spread of visceral leishmaniasis (VL) across Brazil. Here, we describe the development of a new tool for controlling the sand fly vector of the disease: a long-lasting lure, which releases a synthetic male sex pheromone, attractive to both sexes of Lutzomyia longipalpis. This device could be used to improve the effectiveness of residual insecticide spraying as a means of sand fly control, attracting L. longipalpis to insecticide-treated animal houses, where they could be killed in potentially large numbers over a number of weeks. Different lure designs releasing the synthetic pheromone (±)-9-methylgermacrene-B (CAS 183158-38-5) were field-tested in Araçatuba, São Paulo (SP). Experiments compared numbers of sand flies caught overnight in experimental chicken sheds with pheromone lures, to numbers caught in control sheds without pheromone. Prototype lures, designed to last one night, were first used to confirm the attractiveness of the pheromone in SP, and shown to attract significantly more flies to test sheds than controls. Longer-lasting lures were tested when new, and at fortnightly intervals. Lures loaded with 1 mg of pheromone did not attract sand flies for more than two weeks. However, lures loaded with 10 mg of pheromone, with a releasing surface of 15 cm2 or 7.5 cm2, attracted female L. longipalpis for up to ten weeks, and males for up to twelve weeks. Approximately five times more sand flies were caught with 7.5 cm2 10 mg lures when first used than occurred naturally in non-experimental chicken resting sites. These results demonstrate that these lures are suitably long-lasting and attractive for use in sand fly control programmes in SP. To our knowledge, this is the first sex pheromone-based technology targeting an insect vector of a neglected human disease. Further studies should explore the general applicability of this approach for combating other insect-borne diseases
    • …
    corecore