38 research outputs found

    Allometric scaling of the elevation of maternal energy intake during lactation

    Get PDF
    In most mammals, lactating mothers dramatically increase their food intake after parturition and reach a peak intake rate after a certain time while their offspring continue to grow. A common view, perpetuated by the metabolic theory of ecology, is that the allometric scaling of maternal metabolic rate with body mass limits the changes in energy intake and expenditure. Therefore these potential effects of metabolic scaling should be reflected in the elevation of maternal energy intake during lactation. To test this hypothesis, we collected published data on 24 species (13 domesticated) and established scaling relationships for several characteristics of the patterns of energy intake elevation (amplitude of the elevation, time to peak, and cumulative elevation to peak). A curvilinear allometric scaling relationship with maternal body mass (in double-logarithmic space) was found for the amplitude of maternal energy intake elevation, similarly to what has been observed for scaling relationships of basal metabolic rate in non-breeding mammals. This result indirectly supports the metabolic theory of ecology. However, this curvilinear allometric scaling does not seem to drive the scaling relationships found for the other characteristics of maternal energy intake. Both the duration and shape of the energy intake patterns showed substantial variation independently of species’ body mass. Data available for a few mammals, mostly domesticated, provides little evidence for the hypothesis that a single law of metabolic scaling governs the elevation of maternal energy intake after parturition. Obtaining further food intake data in wild species will be crucial to unravel the general mechanisms underlying variation in this unique adaptation of mammalian females

    Vers des systÚmes d'élevage résilients : une approche de l'allocation de la ressource pour combiner sélection et conduite dans l'environnement du troupeau

    No full text
    Selecting those animals that have the greatest level of production, with little regard for other traits, has historically worked well in a favorable environment (i.e. nutrient-rich diet, low pathogen load, thermo-neutrality). However, for numerous reasons (economic, climatic, ecological) farmers will find it increasingly difficult, and indeed may actively choose not, to provide such favorable conditions in their herd environment. Selecting animals that match the future herd environments thus becomes as important as managing the herd environment to match the selected genotypes. To better identify constraints and opportunities to apply these two options, we propose, for the first time, in this thesis an animal model integrating the effects of selection and management. This model integrates resource allocation between life-functions resource as heritable traits. It enables simulating short-term performance and long-term selection response resulting from the transmission of allocation traits between generations. The model was applied to the dairy goat and focused on the management of extended lactation (EL) for a part of the herd (management practice based on keeping females in lactation without a new reproductive cycle). Both selection and management were assumed to influence the way every animal allocates its resource between functions. We aimed to assess the significance of this assumption for a better understanding of the development of genotype-environment interactions (G × E) over the long-term. In a herd subject to variations in the feeding level, different selection strategies aiming at improving milk production and longevity were simulated. In agreement with the resource allocation theory, the selection responses show improving production and survival has to face a trade-off between these two traits. However, this trade-off is alleviated when selection is combined with some proportion of EL in the herd. Such a synergistic effect between selection and management results from a complex interaction between the individual dynamic performance during EL and the herd turnover. Thereby, the innate capacity of goats to extend their lactation might be promoted to enhance herd resilience.SĂ©lectionner les animaux qui ont le plus haut niveau de production, en tenant peu compte d’autres caractĂšres, a toujours bien fonctionnĂ© dans les conditions d’un environnement favorable (i.e. ration riche en nutriments, faible charge pathogĂšne, thermoneutralitĂ©). Toutefois, pour de nombreuses raisons (Ă©conomiques, climatiques, Ă©cologiques), les Ă©leveurs auront sans doute de plus en plus de mal Ă  rĂ©unir de telles conditions dans l’environnement de leur troupeau, et pourront mĂȘme dĂ©libĂ©rĂ©ment choisir de ne pas le faire. SĂ©lectionner des animaux qui soient adaptĂ©s avec les conditions futures des troupeaux devient donc tout aussi important qu’adapter la conduite du troupeau en fonction des gĂ©notypes sĂ©lectionnĂ©s. Pour mieux identifier les contraintes et les opportunitĂ©s d'appliquer ces deux options, nous proposons, pour la premiĂšre fois dans cette thĂšse, un modĂšle animal intĂ©grant les effets de la sĂ©lection gĂ©nĂ©tique et de la conduite du troupeau. Ce modĂšle intĂšgre des coefficients d’allocation de la ressource alimentaire entre les fonctions biologiques en tant que caractĂšres hĂ©ritables Il permet de simuler Ă  court-terme les performances zootechniques et Ă  long-terme les rĂ©ponses Ă  la sĂ©lection rĂ©sultant de la transmission de ces caractĂšres d’allocation entre gĂ©nĂ©rations. Le modĂšle a Ă©tĂ© appliquĂ© Ă  la chĂšvre laitiĂšre et se focalise sur la conduite en lactation longue (LL) d’une partie des chĂšvres du troupeau (conduite consistant Ă  prĂ©server des femelles en lactation ayant aprĂšs une mise bas sans rĂ©engagement d’une nouvelle reproduction). Nous sommes partis du principe que la sĂ©lection et la conduite du troupeau influencent tous deux la façon dont chaque animal alloue ses ressources entre ses fonctions biologiques. Nous avons cherchĂ© Ă  Ă©valuer la portĂ©e de ce principe pour mieux comprendre le dĂ©veloppement des interactions gĂ©notype-environnement (G x E) sur le long terme. Dans un troupeau soumis Ă  des variations du niveau d'alimentation, diffĂ©rentes stratĂ©gies de sĂ©lection ciblant l’amĂ©lioration de la production laitiĂšre et de la longĂ©vitĂ© ont Ă©tĂ© simulĂ©es. En accord avec la thĂ©orie de l’allocation, les rĂ©ponses Ă  la sĂ©lection rĂ©vĂšlent que l’amĂ©lioration de la production et de la survie doit faire face Ă  un compromis entre ces deux caractĂšres. Cependant, ce compromis est attĂ©nuĂ© lorsque la sĂ©lection est combinĂ©e avec la conduite en LL d’une partie du troupeau. Un tel effet de synergie entre sĂ©lection et conduite rĂ©sulte d’une interaction complexe entre la dynamique individuelle de performance au cours de la LL et le renouvellement du troupeau. Ainsi, la capacitĂ© innĂ©e des chĂšvres Ă  prolonger leur lactation semble pouvoir ĂȘtre valorisĂ©e pour amĂ©liorer la rĂ©silience du troupeau

    Towards resilient livestock systems : a resource allocation approach to combine selection and management within the herd environment

    No full text
    SĂ©lectionner les animaux qui ont le plus haut niveau de production, en tenant peu compte d’autres caractĂšres, a toujours bien fonctionnĂ© dans les conditions d’un environnement favorable (i.e. ration riche en nutriments, faible charge pathogĂšne, thermoneutralitĂ©). Toutefois, pour de nombreuses raisons (Ă©conomiques, climatiques, Ă©cologiques), les Ă©leveurs auront sans doute de plus en plus de mal Ă  rĂ©unir de telles conditions dans l’environnement de leur troupeau, et pourront mĂȘme dĂ©libĂ©rĂ©ment choisir de ne pas le faire. SĂ©lectionner des animaux qui soient adaptĂ©s avec les conditions futures des troupeaux devient donc tout aussi important qu’adapter la conduite du troupeau en fonction des gĂ©notypes sĂ©lectionnĂ©s. Pour mieux identifier les contraintes et les opportunitĂ©s d'appliquer ces deux options, nous proposons, pour la premiĂšre fois dans cette thĂšse, un modĂšle animal intĂ©grant les effets de la sĂ©lection gĂ©nĂ©tique et de la conduite du troupeau. Ce modĂšle intĂšgre des coefficients d’allocation de la ressource alimentaire entre les fonctions biologiques en tant que caractĂšres hĂ©ritables Il permet de simuler Ă  court-terme les performances zootechniques et Ă  long-terme les rĂ©ponses Ă  la sĂ©lection rĂ©sultant de la transmission de ces caractĂšres d’allocation entre gĂ©nĂ©rations. Le modĂšle a Ă©tĂ© appliquĂ© Ă  la chĂšvre laitiĂšre et se focalise sur la conduite en lactation longue (LL) d’une partie des chĂšvres du troupeau (conduite consistant Ă  prĂ©server des femelles en lactation ayant aprĂšs une mise bas sans rĂ©engagement d’une nouvelle reproduction). Nous sommes partis du principe que la sĂ©lection et la conduite du troupeau influencent tous deux la façon dont chaque animal alloue ses ressources entre ses fonctions biologiques. Nous avons cherchĂ© Ă  Ă©valuer la portĂ©e de ce principe pour mieux comprendre le dĂ©veloppement des interactions gĂ©notype-environnement (G x E) sur le long terme. Dans un troupeau soumis Ă  des variations du niveau d'alimentation, diffĂ©rentes stratĂ©gies de sĂ©lection ciblant l’amĂ©lioration de la production laitiĂšre et de la longĂ©vitĂ© ont Ă©tĂ© simulĂ©es. En accord avec la thĂ©orie de l’allocation, les rĂ©ponses Ă  la sĂ©lection rĂ©vĂšlent que l’amĂ©lioration de la production et de la survie doit faire face Ă  un compromis entre ces deux caractĂšres. Cependant, ce compromis est attĂ©nuĂ© lorsque la sĂ©lection est combinĂ©e avec la conduite en LL d’une partie du troupeau. Un tel effet de synergie entre sĂ©lection et conduite rĂ©sulte d’une interaction complexe entre la dynamique individuelle de performance au cours de la LL et le renouvellement du troupeau. Ainsi, la capacitĂ© innĂ©e des chĂšvres Ă  prolonger leur lactation semble pouvoir ĂȘtre valorisĂ©e pour amĂ©liorer la rĂ©silience du troupeau.Selecting those animals that have the greatest level of production, with little regard for other traits, has historically worked well in a favorable environment (i.e. nutrient-rich diet, low pathogen load, thermo-neutrality). However, for numerous reasons (economic, climatic, ecological) farmers will find it increasingly difficult, and indeed may actively choose not, to provide such favorable conditions in their herd environment. Selecting animals that match the future herd environments thus becomes as important as managing the herd environment to match the selected genotypes. To better identify constraints and opportunities to apply these two options, we propose, for the first time, in this thesis an animal model integrating the effects of selection and management. This model integrates resource allocation between life-functions resource as heritable traits. It enables simulating short-term performance and long-term selection response resulting from the transmission of allocation traits between generations. The model was applied to the dairy goat and focused on the management of extended lactation (EL) for a part of the herd (management practice based on keeping females in lactation without a new reproductive cycle). Both selection and management were assumed to influence the way every animal allocates its resource between functions. We aimed to assess the significance of this assumption for a better understanding of the development of genotype-environment interactions (G × E) over the long-term. In a herd subject to variations in the feeding level, different selection strategies aiming at improving milk production and longevity were simulated. In agreement with the resource allocation theory, the selection responses show improving production and survival has to face a trade-off between these two traits. However, this trade-off is alleviated when selection is combined with some proportion of EL in the herd. Such a synergistic effect between selection and management results from a complex interaction between the individual dynamic performance during EL and the herd turnover. Thereby, the innate capacity of goats to extend their lactation might be promoted to enhance herd resilience

    Towards resilient livestock systems (a resource allocation approach to combine selection and management within the herd environment)

    No full text
    SĂ©lectionner les animaux qui ont le plus haut niveau de production, en tenant peu compte d autres caractĂšres, a toujours bien fonctionnĂ© dans les conditions d un environnement favorable (i.e. ration riche en nutriments, faible charge pathogĂšne, thermoneutralitĂ©). Toutefois, pour de nombreuses raisons (Ă©conomiques, climatiques, Ă©cologiques), les Ă©leveurs auront sans doute de plus en plus de mal Ă  rĂ©unir de telles conditions dans l environnement de leur troupeau, et pourront mĂȘme dĂ©libĂ©rĂ©ment choisir de ne pas le faire. SĂ©lectionner des animaux qui soient adaptĂ©s avec les conditions futures des troupeaux devient donc tout aussi important qu adapter la conduite du troupeau en fonction des gĂ©notypes sĂ©lectionnĂ©s. Pour mieux identifier les contraintes et les opportunitĂ©s d'appliquer ces deux options, nous proposons, pour la premiĂšre fois dans cette thĂšse, un modĂšle animal intĂ©grant les effets de la sĂ©lection gĂ©nĂ©tique et de la conduite du troupeau. Ce modĂšle intĂšgre des coefficients d allocation de la ressource alimentaire entre les fonctions biologiques en tant que caractĂšres hĂ©ritables Il permet de simuler Ă  court-terme les performances zootechniques et Ă  long-terme les rĂ©ponses Ă  la sĂ©lection rĂ©sultant de la transmission de ces caractĂšres d allocation entre gĂ©nĂ©rations. Le modĂšle a Ă©tĂ© appliquĂ© Ă  la chĂšvre laitiĂšre et se focalise sur la conduite en lactation longue (LL) d une partie des chĂšvres du troupeau (conduite consistant Ă  prĂ©server des femelles en lactation ayant aprĂšs une mise bas sans rĂ©engagement d une nouvelle reproduction). Nous sommes partis du principe que la sĂ©lection et la conduite du troupeau influencent tous deux la façon dont chaque animal alloue ses ressources entre ses fonctions biologiques. Nous avons cherchĂ© Ă  Ă©valuer la portĂ©e de ce principe pour mieux comprendre le dĂ©veloppement des interactions gĂ©notype-environnement (G x E) sur le long terme. Dans un troupeau soumis Ă  des variations du niveau d'alimentation, diffĂ©rentes stratĂ©gies de sĂ©lection ciblant l amĂ©lioration de la production laitiĂšre et de la longĂ©vitĂ© ont Ă©tĂ© simulĂ©es. En accord avec la thĂ©orie de l allocation, les rĂ©ponses Ă  la sĂ©lection rĂ©vĂšlent que l amĂ©lioration de la production et de la survie doit faire face Ă  un compromis entre ces deux caractĂšres. Cependant, ce compromis est attĂ©nuĂ© lorsque la sĂ©lection est combinĂ©e avec la conduite en LL d une partie du troupeau. Un tel effet de synergie entre sĂ©lection et conduite rĂ©sulte d une interaction complexe entre la dynamique individuelle de performance au cours de la LL et le renouvellement du troupeau. Ainsi, la capacitĂ© innĂ©e des chĂšvres Ă  prolonger leur lactation semble pouvoir ĂȘtre valorisĂ©e pour amĂ©liorer la rĂ©silience du troupeau.Selecting those animals that have the greatest level of production, with little regard for other traits, has historically worked well in a favorable environment (i.e. nutrient-rich diet, low pathogen load, thermo-neutrality). However, for numerous reasons (economic, climatic, ecological) farmers will find it increasingly difficult, and indeed may actively choose not, to provide such favorable conditions in their herd environment. Selecting animals that match the future herd environments thus becomes as important as managing the herd environment to match the selected genotypes. To better identify constraints and opportunities to apply these two options, we propose, for the first time, in this thesis an animal model integrating the effects of selection and management. This model integrates resource allocation between life-functions resource as heritable traits. It enables simulating short-term performance and long-term selection response resulting from the transmission of allocation traits between generations. The model was applied to the dairy goat and focused on the management of extended lactation (EL) for a part of the herd (management practice based on keeping females in lactation without a new reproductive cycle). Both selection and management were assumed to influence the way every animal allocates its resource between functions. We aimed to assess the significance of this assumption for a better understanding of the development of genotype-environment interactions (G . E) over the long-term. In a herd subject to variations in the feeding level, different selection strategies aiming at improving milk production and longevity were simulated. In agreement with the resource allocation theory, the selection responses show improving production and survival has to face a trade-off between these two traits. However, this trade-off is alleviated when selection is combined with some proportion of EL in the herd. Such a synergistic effect between selection and management results from a complex interaction between the individual dynamic performance during EL and the herd turnover. Thereby, the innate capacity of goats to extend their lactation might be promoted to enhance herd resilience.PARIS-AgroParisTech Centre Paris (751052302) / SudocSudocFranceF

    What is the energetic cost of resistance to gastro-intestinal parasite? Fitting a mechanistic model to experimental infection data in sheep

    No full text
    International audienceSelection for resistance to gastro-intestinal nematode (GIN) is a promising strategy for the sustainable control of parasitism in grazing systems, but the consequences on production traits are still not fully known. While promoting a strong immunity to GIN should alleviate parasite-induced damage, a metabolic cost through the diversion of nutrients away from productive functions may incur. Accordingly, there may be an optimal level of immunity to select on, which depends on the nutrient allocation and on the costs of immunity. These would need to be estimated in order to accurately predict selection responses. Our aim was to estimate trade-offs and the energetic cost of mounting an immune response against GIN infection by fitting a mechanistic host-parasite interaction model to data from female lambs that were experimentally infected with Haemonchus contortus. Individual data related to 42 lambs from two lines divergently selected on resistance to this parasite. At 5 months of age those lambs were infected during 5 weeks with a single-dose of 10,000 third-stage larvae while being fed ad libitum a high-protein, low-energy diet. The model was based on an energy balance approach to predict changes in body weight (BW), body fat thickness (BFT) and immune response cost from observed feed intake. The immune response cost was included as an unknown component to estimate. Immune response was part of an interaction with the within-host parasite dynamics and this determined fecal egg count (FEC) and haematocrit over the course of infection. The model was fitted individually using a normalized root mean square error calculated over the repeated measures of BFT, BW, haematocrit, and FEC. Our results showed that the broad variation in observed responses to GIN infection can be largely explained by two parameters controlling immunity. They also indicate a small energy cost of immunity associated with reduced feed intake, which suggests a trade-off between GIN resistance and body fatness during growth

    Modelling as a tool to explore adaptation of Mediterranean sheep farming systems to climate change

    No full text
    International audienceMediterranean pastoral farming systems are increasingly subject to strong climatic constraints, which impact their access to grazing resources. To develop livestock farming systems adapted to climate change, combining resilientherds and an efficient use of various feed resources is central. Different combinations can be explored by modelling the impacts of climate change on feed resources and adaptation levers at the different levels of the farm organization(animal-herd-livestock system) however, this is methodologically challenging. This study aims at developing a simulation tool to represent, from animal to farm components, the multi-level implications of adaptation leversthat can be mobilized by Mediterranean small ruminant farmers. These levers can be related to animal biology and/or management strategies. The simulation tool enables to evaluate relative and combined effects of levers onfarm resilience and efficiency. It was developed with GAMA, an agent-based computer language, to allows the representation of each individual components (animals and areas) of the farming system. The simulator was calibratedon two contrasting pastoral sheep systems in the South of France: one grazing system uniquely based on rangelands and one complemented system with both rangelands and forage production. For these two contrasting situations, wetested the effects of three levers: (1) increasing the part of pastoral surfaces; (2) shifting the grazing periods; and (3) decreasing the flock size to better match with resources availability. The simulator was able to mimic the functioningof livestock farming systems and to evaluate for each situation the impact of adaptation levers on farm efficiency and resilience. Based on this prototype, other situations could be simulated according to climate change scenarios in theMediterranean area and adaptation levers could be explored to address specifically these challenges at the farming system level

    How much energetic trade‐offs limit selection? Insights from livestock and related laboratory model species

    No full text
    International audienceTrade-offs between life history traits are expected to occur due to the limited amount of resources that organisms can obtain and share among biological functions, but are of least concern for selection responses in nutrient-rich or benign environments. In domestic animals, selection limits have not yet been reached despite strong selection for higher meat, milk or egg yields. Yet, negative genetic correlations between productivity traits and health or fertility traits have often been reported, supporting the view that trade-offs do occur in the context of nonlimiting resources. The importance of allocation mechanisms in limiting genetic changes can thus be questioned when animals are mostly constrained by their time to acquire and process energy rather than by feed availability. Selection for high productivity traits early in life should promote a fast metabolism with less energy allocated to self-maintenance (contributing to soma preservation and repair). Consequently, the capacity to breed shortly after an intensive period of production or to remain healthy should be compromised. We assessed those predictions in mammalian and avian livestock and related laboratory model species. First, we surveyed studies that compared energy allocation to maintenance between breeds or lines of contrasting productivity but found little support for the occurrence of an energy allocation trade-off. Second, selection experiments for lower feed intake per unit of product (i.e. higher feed efficiency) generally resulted in reduced allocation to maintenance, but this did not entail fitness costs in terms of survival or future reproduction. These findings indicate that the consequences of a particular selection in domestic animals are much more difficult to predict than one could anticipate from the energy allocation framework alone. Future developments to predict the contribution of time constraints and trade-offs to selection limits will be insightful to breed livestock in increasingly challenging environments
    corecore