1,644 research outputs found

    Protocol for Future Amino Acid Analyses of Samples Returned by the Stardust Mission

    Get PDF
    We have demonstrated that LC-ToF-MS coupled with UV fluorescence detection is a powerful tool for the detection of amino acids in meteorite extracts. Using this new analytical technique we were able to identify the extraterrestrial amino acid AIB extracted from fifteen 20 micron sized Murchison meteorite grains. We found that the amino acid contamination levels in Stardust aerogels was much lower than the levels observed in the Murchison meteorite. In addition, the alpha-dialkyl amino acids AIB and isovaline which are the most abundant amino acids in Murchison were not detected in the aerogel above blank levels. We are currently integrating LIF detection capability to our existing nanoflow LC-ToF-MS for enhanced sensitivity required for the analysis of amino acids in Stardust samples

    Bounding the dimensions of rational cohomology groups

    Full text link
    Let kk be an algebraically closed field of characteristic p>0p > 0, and let GG be a simple simply-connected algebraic group over kk that is defined and split over the prime field Fp\mathbb{F}_p. In this paper we investigate situations where the dimension of a rational cohomology group for GG can be bounded by a constant times the dimension of the coefficient module. We then demonstrate how our results can be applied to obtain effective bounds on the first cohomology of the symmetric group. We also show how, for finite Chevalley groups, our methods permit significant improvements over previous estimates for the dimensions of second cohomology groups.Comment: 13 page

    On the Correlated X-ray and Optical Evolution of SS Cygni

    Full text link
    We have analyzed the variability and spectral evolution of the prototype dwarf nova system SS Cygni using RXTE data and AAVSO observations. A series of pointed RXTE/PCA observations allow us to trace the evolution of the X-ray spectrum of SS Cygni in unprecedented detail, while 6 years of optical AAVSO and RXTE/ASM light curves show long-term patterns. Employing a technique in which we stack the X-ray flux over multiple outbursts, phased according to the optical light curve, we investigate the outburst morphology. We find that the 3-12 keV X-ray flux is suppressed during optical outbursts, a behavior seen previously, but only in a handful of cycles. The several outbursts of SS Cygni observed with the more sensitive RXTE/PCA also show a depression of the X-rays during optical outburst. We quantify the time lags between the optical and X-ray outbursts, and the timescales of the X-ray recovery from outburst. The optical light curve of SS Cygni exhibits brief anomalous outbursts. During these events the hard X-rays and optical flux increase together. The long-term data suggest that the X-rays decline between outburst. Our results are in general agreement with modified disk instability models (DIM), which invoke a two-component accretion flow consisting of a cool optically thick accretion disk truncated at an inner radius, and a quasi-spherical hot corona-like flow extending to the surface of the white dwarf. We discuss our results in the framework of one such model, involving the evaporation of the inner part of the optically thick accretion disk, proposed by Meyer & Meyer-Hofmeister (1994).Comment: 24 pages, 8 figures, 2 tables, accepted for publication in Ap

    How Many Cooks Spoil the Soup?

    Get PDF
    In this work, we study the following basic question: "How much parallelism does a distributed task permit?" Our definition of parallelism (or symmetry) here is not in terms of speed, but in terms of identical roles that processes have at the same time in the execution. We initiate this study in population protocols, a very simple model that not only allows for a straightforward definition of what a role is, but also encloses the challenge of isolating the properties that are due to the protocol from those that are due to the adversary scheduler, who controls the interactions between the processes. We (i) give a partial characterization of the set of predicates on input assignments that can be stably computed with maximum symmetry, i.e., Θ(Nmin)\Theta(N_{min}), where NminN_{min} is the minimum multiplicity of a state in the initial configuration, and (ii) we turn our attention to the remaining predicates and prove a strong impossibility result for the parity predicate: the inherent symmetry of any protocol that stably computes it is upper bounded by a constant that depends on the size of the protocol.Comment: 19 page

    AMINO ACID ANALYSES OF THE ANTARCTIC CM2 METEORITES ALH 83100 AND LEW 90500 USING LIQUID CHROMATOGRAPHY-TIME OF FLIGHT-MASS SPECTROMETRY

    Get PDF
    The investigation of organic compounds in primitive carbonaceous meteorites provides a record of the chemical processes that occurred in the early solar system. In particular, amino acids have been shown to be potential indicators in tracing the nature of carbonaceous chondrite parent bodies [ 13. The delivery of amino acids by carbonaceous chondrites to the early Earth could have been any important source of the Earth's prebiotic organic inventory [2]. Over 80 different amino acids have been detected in the Murchison CM2 meteorite, most of them completely non-existent in the terrestrial biosphere [3]. We have optimized a new liquid chromatography-time-of-flight-mass spectrometry (LC-ToF-MS) technique coupled with OPAMAC derivatization in order to detect amino acids in meteorite extracts by UV fluorescence and exact mass simultaneously. The detection limit of the LC-ToF-MS instrument for amino acids is at least 3 orders of magnitude lower than traditional GC-MS techniques. Here we report on the first analyses of amino acids and their enantiomeric abundances in the CM2 carbonaceous meteorites ALH 83100, LEW 90500, and Murchison using this new LC-ToF-MS instrument configuration. Amino acid analyses of any kind for the CM meteorite ALH 83100 have not previously been reported

    A Detailed Analysis of the Dust Formation Zone of IRC+10216 Derived from Mid-IR Bands of C2H2 and HCN

    Get PDF
    A spectral survey of IRC+10216 has been carried out in the range 11 to 14 um with a spectral resolution of about 4 km s^-1. We have identified a forest of lines in six bands of C2H2 involving the vibrational states from the ground to 3nu5 and in two bands of HCN, involving the vibrational states from the ground up to 2nu2. Some of these transitions are observed also in H13CCH and H13CN. We have estimated the kinetic, vibrational, and rotational temperatures, and the abundances and column densities of C2H2 and HCN between 1 and 300 R* (1.5E16 cm) by fitting about 300 of these ro-vibrational lines. The envelope can be divided into three regions with approximate boundaries at 0.019 arcsec (the stellar photosphere), 0.1 arcsec (the inner dust formation zone), and 0.4 arcsec (outer dust formation zone). Most of the lines might require a large microturbulence broadening. The derived abundances of C2H2 and HCN increase by factors of 10 and 4, respectively, from the innermost envelope outwards. The derived column densities for both C2H2 and HCN are 1.6E19 cm^-2. Vibrational states up to 3000 K above ground are populated, suggesting pumping by near-infrared radiation from the star and innermost envelope. Low rotational levels can be considered under LTE while those with J>20-30 are not thermalized. A few lines require special analysis to deal with effects like overlap with lines of other molecules.Comment: 8 pages, 16 figures, 2 machine-readable tables, accepted in the Astrophysical Journa

    Random bond Ising chain in a transverse magnetic field: A finite-size scaling analysis

    Full text link
    We investigate the zero-temperature quantum phase transition of the random bond Ising chain in a transverse magnetic field. Its critical properties are identical to those of the McCoy-Wu model, which is a classical Ising model in two dimensions with layered disorder. The latter is studied via Monte Carlo simulations and transfer matrix calculations and the critical exponents are determined with a finite-size scaling analysis. The magnetization and susceptibility obey conventional rather than activated scaling. We observe that the order parameter-- and correlation function--probability distribution show a nontrivial scaling near the critical point which implies a hierarchy of critical exponents associated with the critical behavior of the generalized correlation lengths.Comment: RevTeX 13 pages + 4 figures (appended as uuencoded compressed tar-file), THP61-9

    Infrared Spectroscopy of Symbiotic Stars. IV. V2116 Ophiuchi/GX 1+4, The Neutron Star Symbiotic

    Get PDF
    We have computed, based on 17 infrared radial velocities, the first set of orbital elements for the M giant in the symbiotic binary V2116 Ophiuchi. The giant's companion is a neutron star, the bright X-ray source GX 1+4. We find an orbital period of 1161 days by far the longest of any known X-ray binary. The orbit has a modest eccentricity of 0.10 with an orbital circularization time of less than 10^6 years. The large mass function of the orbit significantly restricts the mass of the M giant. Adopting a neutron-star mass of 1.35M(Sun), the maximum mass of the M giant is 1.22M(Sun), making it the less massive star. Derived abundances indicate a slightly subsolar metallicity. Carbon and nitrogen are in the expected ratio resulting from the red-giant first dredge-up phase. The lack of O-17 suggests that the M-giant has a mass less than 1.3M(Sun), consistent with our maximum mass. The red giant radius is 103R(Sun), much smaller than the estimated Roche lobe radius. Thus, the mass loss of the red giant is via a stellar wind. Although the M giant companion to the neutron star has a mass similar to the late-type star in low-mass X-ray binaries, its near-solar abundances and apparent runaway velocity are not fully consistent with the properties of this class of stars.Comment: In press to The Astrophysical Journal (10 April 2006 issue). 23 page

    Dynamics and Transport in Random Antiferromagnetic Spin Chains

    Get PDF
    We present the first results on the low-frequency dynamical and transport properties of random antiferromagnetic spin chains at low temperature (TT). We obtain the momentum and frequency dependent dynamic structure factor in the Random Singlet (RS) phases of both spin-1/2 and spin-1 chains, as well as in the Random Dimer phase of spin-1/2 chains. We also show that the RS phases are unusual `spin-metals' with divergent low-frequency conductivity at T=0, and follow the spin conductivity through `metal-insulator' transitions tuned by the strength of dimerization or Ising anisotropy in the spin-1/2 case, and by the strength of disorder in the spin-1 case.Comment: 4 pages (two-column format). Presentation substantially revised to accomodate new result
    corecore