1,271 research outputs found

    Hawking Radiation from Fluctuating Black Holes

    Get PDF
    Classically, black Holes have the rigid event horizon. However, quantum mechanically, the event horizon of black holes becomes fuzzy due to quantum fluctuations. We study Hawking radiation of a real scalar field from a fluctuating black hole. To quantize metric perturbations, we derive the quadratic action for those in the black hole background. Then, we calculate the cubic interaction terms in the action for the scalar field. Using these results, we obtain the spectrum of Hawking radiation in the presence of interaction between the scalar field and the metric. It turns out that the spectrum deviates from the Planck spectrum due to quantum fluctuations of the metric.Comment: 35pages, 4 figure

    New working spaces. Policy perspectives before and after the COVID-19 pandemic

    Get PDF
    This chapter maps the debate of new working spaces (particularly CSs) on the level of European policy making. It explores how new working spaces have been interpreted by the European Commission and how this debate has evolved from its origins up to the recent COVID-19 period. For these purposes, two diferent ideas of CSs will be presented and discussed: CSs as innovation drivers boosting economic development; and as opportunities for territorial regeneration, such as brownfeld redevelopment or local hubs promoting social cohesion. Specifc attention is devoted to identifying the evolution of policies supporting these spaces with a focus on place-based and urban planning measures before and during the COVID-19 pandemic. This chapter empirically investigates this debate analyzing EU policy reports and case studies. Finally, remarks and suggestions for policy learning are presented

    Static black hole solutions with a self interacting conformally coupled scalar field

    Full text link
    We study static, spherically symmetric black hole solutions of the Einstein equations with a positive cosmological constant and a conformally coupled self interacting scalar field. Exact solutions for this model found by Mart{\'\i}nez, Troncoso, and Zanelli, (MTZ), were subsequently shown to be unstable under linear perturbations, with modes that diverge arbitrarily fast. We find that the moduli space of static, spherically symmetric solutions that have a regular horizon -and satisfy the weak and dominant energy conditions outside the horizon- is a singular subset of a two dimensional space parameterized by the horizon radius and the value of the scalar field at the horizon. The singularity of this space of solutions provides an explanation for the instability of the MTZ spacetimes, and leads to the conclusion that, if we include stability as a criterion, there are no physically acceptable black hole solutions for this system that contain a cosmological horizon in the exterior of its event horizon.Comment: 22 pages, 5 figures (replaced figure #4), final version, to be published in PR

    Duality between simple-group gauge theories and some applications

    Full text link
    In this paper we investigate N=1 supersymmetric gauge theories with a product gauge group. By using smoothly confining dynamics, we can find new dualities which include higher-rank tensor fields, and in which the dual gauge group is simple, not a product. Some of them are dualities between chiral and non-chiral gauge theories. We also discuss some applications to dynamical supersymmetry breaking phenomena and new confining theories with a tree-level superpotential.Comment: 33 pages, LaTeX, references added, version to appear in PR

    Supersymmetric Gauge Theories with an Affine Quantum Moduli Space

    Full text link
    All supersymmetric gauge theories based on simple groups which have an affine quantum moduli space, i.e. one generated by gauge invariants with no relations, W=0, and anomaly matching at the origin, are classified. It is shown that the only theories with no gauge invariants (and moduli space equal to a single point) are the two known examples, SU(5) with 5-bar + 10 and SO(10) with a spinor. The index of the matter representation must be at least as big as the index of the adjoint in theories which have a non-trivial relation among the gauge invariants.Comment: Incorrect proof that theories with constraints must have mu >= mu(adj) replaced by a correct one (6 pages, uses revtex, amssymb, array

    The dynamical evolution of protoplanetary disks and planets in dense star clusters

    Full text link
    Most stars are born in dense stellar environments where the formation and early evolution of planetary systems may be significantly perturbed by encounters with neighbouring stars. To investigate on the fate of circumstellar gas disks and planets around young stars dense stellar environments, we numerically evolve star-disk-planet systems. We use the NN-body codes NBODY6++GPU and SnIPES for the dynamical evolution of the stellar population, and the SPH-based code GaSPH for the dynamical evolution of protoplanetary disks. The secular evolution of a planetary system in a cluster differs from that of a field star. Most stellar encounters are tidal, adiabatic and nearly-parabolic. The parameters that characterize the impact of an encounter include the orientation of the protoplanetary disk and planet relative to the orbit of the encountering star, and the orbital phase and the semi-major axis of the planet. We investigate this dependence for close encounters (rp/a100r_p/a\leq 100, where rpr_p is the periastron distance of the encountering star and aa is the semi-major axis of the planet). We also investigate distant perturbers (rp/a100r_p/a\gg 100), which have a moderate effect on the dynamical evolution of the planet and the protoplanetary disk. We find that the evolution of protoplanetary disks in star clusters differs significantly from that of isolated systems. When interpreting the outcome of the planet formation process, it is thus important to consider their birth environments.Comment: 14 Pages, 11 Figures, Accepted for pubblication on MNRAS on 13 September 202

    Oncolytic virus expressing RANTES and IL-15 enhances function of CAR-modified T cells in solid tumors

    Get PDF
    We improved the migration and survival of chimeric antigen receptor (CAR)-modified T cells in solid tumors by combining CAR-T cells with an armed oncolytic virus. Local delivery of the chemokine RANTES and the cytokine IL-15 by the oncolytic virus enhanced the trafficking and persistence of the CAR-T cells, resulting in improved antitumor effects

    On alternative approaches to Lorentz violation in loop quantum gravity inspired models

    Full text link
    Recent claims point out that possible violations of Lorentz symmetry appearing in some semiclassical models of extended matter dynamics motivated by loop quantum gravity can be removed by a different choice of canonically conjugated variables. In this note we show that such alternative is inconsistent with the choice of variables in the underlying quantum theory together with the semiclassical approximation, as long as the correspondence principle is maintained. A consistent choice will violate standard Lorentz invariance. Thus, to preserve a relativity principle in this framework, the linear realization of Lorentz symmetry should be extended or superseded.Comment: 4 pages, revtex4, no figures, references adde

    Linking the formation and fate of exo-Kuiper belts within solar system analogues

    Get PDF
    Abstract Escalating observations of exo-minor planets and their destroyed remnants both passing through the solar system and within white dwarf planetary systems motivate an understanding of the orbital history and fate of exo-Kuiper belts and planetesimal discs. Here we explore how the structure of a 40 − 1000 au annulus of planetesimals orbiting inside of a solar system analogue that is itself initially embedded within a stellar cluster environment varies as the star evolves through all of its stellar phases. We attempt this computationally challenging link in four parts: (1) by performing stellar cluster simulations lasting 100 Myr, (2) by making assumptions about the subsequent quiescent 11 Gyr main-sequence evolution, (3) by performing simulations throughout the giant branch phases of evolution, and (4) by making assumptions about the belt’s evolution during the white dwarf phase. Throughout these stages, we estimate the planetesimals’ gravitational responses to analogues of the four solar system giant planets, as well as to collisional grinding, Galactic tides, stellar flybys, and stellar radiation. We find that the imprint of stellar cluster dynamics on the architecture of ≳ 100 km-sized exo-Kuiper belt planetesimals is retained throughout all phases of stellar evolution unless violent gravitational instabilities are triggered either (1) amongst the giant planets, or (2) due to a close (≪103 au) stellar flyby. In the absence of these instabilities, these minor planets simply double their semimajor axis while retaining their primordial post-cluster eccentricity and inclination distributions, with implications for the free-floating planetesimal population and metal-polluted white dwarfs

    Spreading in narrow channels

    Full text link
    We study a lattice model for the spreading of fluid films, which are a few molecular layers thick, in narrow channels with inert lateral walls. We focus on systems connected to two particle reservoirs at different chemical potentials, considering an attractive substrate potential at the bottom, confining side walls, and hard-core repulsive fluid-fluid interactions. Using kinetic Monte Carlo simulations we find a diffusive behavior. The corresponding diffusion coefficient depends on the density and is bounded from below by the free one-dimensional diffusion coefficient, valid for an inert bottom wall. These numerical results are rationalized within the corresponding continuum limit.Comment: 16 pages, 10 figure
    corecore