58 research outputs found

    Cyclam κ4 To κ3 Ligand Denticity Change Upon Mono-n-substitution With A Carboxypropyl Pendant Arm In A Ruthenium Nitrosyl Complex

    No full text
    The complex fac-[Ru(NO)Cl2(κ3N 4,N8,N11(1-carboxypropyl)cyclam)] Cl·H2O (1-carboxypropyl)cyclam = 3-(1,4,8,11- tetraazacyclotetradecan-1-yl)propionic acid) was prepared in a one pot reaction by mixing equimolar amounts of RuNOCl3 and (1-carboxypropyl)cyclam and was characterized by X-ray crystallography, electrospray ionization tandem mass spectrometry (ESI-MS/MS), elemental analysis, NMR, and electronic and vibrational (IR) spectroscopies. fac-[Ru(NO)Cl2(κ 3N4,N8,N11(1-carboxypropyl)cyclam)] Cl·H2O crystallizes in the triclinic, space group P1, No. 2, with unit cell parameters of a = 8.501(1) Å, b = 9.157(1) Å, c = 14.200(1) Å, α = 72.564(5)°, β = 82.512(5)°, γ = 80.308(5)°, and Z = 2. The Ru-N interatomic distance and bond angle in the [Ru-NO] unit are 1.739(2) Å and 167.7(2)°, respectively. ESI-MS/MS shows characteristic dissociation chemistry that initiates by HCl or NO loss. The IR spectrum displays a ν(NO) at 1881 cm-1 indicating a nitrosonium character. The electronic spectrum shows absorptions bands at 264 nm (log ε = 3.27), 404 nm (log ε = 2.53), and 532 nm (log ε = 1.88). 1H and 13C NMR are in agreement with the proposed molecular structure, which shows a very singular architecture where the cyclam ring N (with the carboxypropyl pendant arm) is not coordinated to the ruthenium resulting in a κ3 instead of the expected κ4 denticity. © 2008 American Chemical Society.471041184125Bernhardt, P.V., Lawrance, G.A., (1990) Coord. Chem. Rev, 104, pp. 297-343(2003) Comprehensive Coordination Chemistry II, , Meyer, T. J, MacCleverty, J, Eds, Elsevier: AmsterdanCostamagna, J., Ferraudi, G., Matsuhiro, B., Campos-Vallette, M., Canales, J., Villagran, M., Vargas, J., Aguirre, M.J., (2000) Coord. Chem. Rev, 196, pp. 125-164Bernhardt, P.V., Sharpe, P.C., (2000) Inorg. Chem, 39, pp. 4123-4129Kaden, T.A., (1984) Top. Curr. Chem, 121, pp. 157-179Dong, Y., Lindoy, L.E., (2003) Coord. Chem. Rev, 245, pp. 11-16Hunter, T.M., Mcnae, I.W., Simpson, D.P., Smith, A.M., Moggach, S., White, F., Walkinshaw, M.D., Sadler, P.J., (2007) Chem. - Eur. J, 13, pp. 40-50Silversides, J.D., Allan, C.C., Archibald, S.J., (2007) Dalton Trans, pp. 971-978Lopes, L.G.F., Sousa, E.H.S., Miranda, J.C.V., Oliveira, C.P., Carvalho, I.M.M., Batista, A.A., Ellena, J., Moreira, I.S., (2002) J. Chem. Soc., Dalton Trans, pp. 1903-1906Martin, L.Y., Sperati, C.R., Busch, D.H., (1977) J. Am. Chem. Soc, 99, pp. 2968-2981Bounsall, E.J., Koprich, S.R., (1970) Can. J. Chem, 48, pp. 1481-1491Walker, D.D., Taube, H., (1981) Inorg. Chem, 20, pp. 2828-2834Tfouni, E., Ferreira, K.Q., Doro, F.G., da Silva, R.S., da Rocha, Z.N., (2005) Coord. Chem. Rev, 249, pp. 405-418Szacilowski, K.T., Xie, P.H., Malkhasian, A.Y.S., Heeg, M.J., Udugala-Ganehenege, M.Y., Wenger, L.E., Endicott, J.F., (2005) Inorg. Chem, 44, pp. 6019-6033DeLeo, M.A., Ford, P.C., (2000) Coord. Chem. Rev, 208, pp. 47-59Cheng, F., Davis, M.F., Hector, A.L., Levason, W., Reid, G., Webster, M., Zhang, W.J., (2007) Eur. J. Inorg. Chem, pp. 2488-2495Kimura, E., Kurogi, Y., Takahashi, T., (1991) Inorg. Chem, 30, pp. 4117-4121Che, C.M., Tang, W.T., Mak, T.C.W., (1988) J. Chem. Soc., Dalton Trans, pp. 2879-2883El Ghachtouli, S., Cadiou, C., Dechamps-Olivier, I., Chuburu, F., Aplincourt, M., Roisnel, T., (2006) Eur. J. Inorg. Chem, pp. 3472-3481Schiegg, A., Kaden, T.A., (1990) Helv. Chim. Acta, 73, pp. 716-722Pallavicini, P.S., Perotti, A., Poggi, A., Seghi, B., Fabbrizzi, L., (1987) J. Am. Chem. Soc, 109, pp. 5139-5144Basak, A.K., Kaden, T.A., (1983) Helv. Chim. Acta, 66, pp. 2086-2092Mouffouk, F., Demetriou, A., Higgins, S.J., Nichols, R.J., (2006) Inorg. Chim. Acta, 359, pp. 3491-3496DeRosa, F., Bu, X.H., Ford, P.C., (2003) Inorg. Chem, 42, pp. 4171-4178DeRosa, F., Bu, X.H., Ford, P.C., (2005) Inorg. Chem, 44, pp. 4157-4165DeRosa, F., Bu, X.H., Pohaku, K., Ford, P.C., (2005) Inorg. Chem, 44, pp. 4166-4174Padilla-Tosta, M.E., Lloris, J.M., Martinez-Manez, R., Benito, A., Soto, J., Pardo, T., Miranda, M.A., Marcos, M.D., (2000) Eur. J. Inorg. Chem, pp. 741-748Poon, C.K., Che, C.M., (1981) J. Chem. Soc., Dalton Trans, pp. 1019-1023Ferreira, K.Q., Doro, F.G., Tfouni, E., (2003) Inorg. Chim. Acta, 355, pp. 205-212De Candia, A.G., Marcolongo, J.P., Slep, L.D., (2007) Polyhedron, 26, pp. 4719-4730daSilva, R.S., Gambardella, M.T.P., Santos, R.H.A., Mann, B.E., Tfouni, E., (1996) Inorg. Chim. Acta, 245, pp. 215-221Silva, M., Tfouni, E., (1997) Inorg. Chem, 36, pp. 274-277daSilva, R.S., Tfouni, E., (1992) Inorg. Chem, 31, pp. 3313-3316Ferreira, K.Q., Cardoso, L.N., Nikolaou, S., da Rocha, Z.N., da Silva, R.S., Tfouni, E., (2005) Inorg. Chem, 44, pp. 5544-5546Tfouni, E., (2000) Coord. Chem. Rev, 196, pp. 281-305Ford, P.C., Petersen, J.D., Hintze, R.E., (1974) Coord. Chem. Rev, 14, pp. 67-105Chen, Y., Shepherd, R.E., (1997) J. Inorg. Biochem, 68, pp. 183-193Ford, P.C., Bourassa, J., Miranda, K., Lee, B., Lorkovic, I., Boggs, S., Kudo, S., Laverman, L., (1998) Coord. Chem. Rev, 171, pp. 185-202Wang, P.G., Xian, M., Tang, X.P., Wu, X.J., Wen, Z., Cai, T.W., Janczuk, A.J., (2002) Chem. Rev, 102, pp. 1091-1134McCleverty, J.A., (2004) Chem. Rev, 104, pp. 403-418Tfouni, E., Krieger, M., McGarvey, B.R., Franco, D.W., (2003) Coord. Chem. Rev, 236, pp. 57-69Roncaroli, F., van Eldik, R., Olabe, J.A., (2005) Inorg. Chem, 44, pp. 2781-2790Rose, M.J., Olmstead, M.M., Mascharak, P.K., (2007) J. Am. Chem. Soc, 129, pp. 5342-5343Ignarro, L.J., (2000) Nitric OxideBiology and Pathobiology, , Academic Press: New YorkWink, D.A., Mitchell, J.B., (1998) Free Radical Biol. Med, 25, pp. 434-456de Gomes, A., Barbugli, P.A., Espreafico, E.M., Doro, F.G., Tfouni, E., (2006) FASEB J, 20, pp. A101Wink, D.A., Vodovotz, Y., Cook, J.A., Krishna, M.C., Kim, S., Coffin, D., DeGraff, W., Mitchell, J.B., (1998) Biochemistry (Moscow), 63, pp. 802-809Pacher, P., Beckman, J.S., Liaudet, L., (2007) Physiol. Rev, 87, pp. 315-424Wink, D.A., Grisham, M.B., Mitchell, J.B., Ford, P.C., (1996) Methods Enzymol, 268, pp. 12-31Oliveira, F.S., Togniolo, V., Pupo, T., Tedesco, A.C., da Silva, R.S., (2004) Inorg. Chem. Commun, 7, pp. 160-164Carlos, R.M., Ferro, A.A., Silva, H.A.S., Gomes, M.G., Borges, S.S.S., Ford, P.C., Tfouni, E., Franco, D.W., (2004) Inorg. Chim. Acta, 357, pp. 1381-1388Oliveira, F.D., Ferreira, K.Q., Bonaventura, D., Bendhack, L.M., Tedesco, A.C., Machado, S.D., Tfouni, E., da Silva, R.S., (2007) J. Inorg. Biochem, 101, pp. 313-320de Barros, B.F., Toledo, J.C., Franco, D.W., Tfouni, E., Krieger, M.H., (2002) Nitric Oxide-Biol. Chem, 7, pp. 50-56Marcondes, F.G., Ferro, A.A., Souza-Torsoni, A., Sumitani, M., Clarke, M.J., Franco, D.W., Tfouni, E., Krieger, M.H., (2002) Life Sci, 70, pp. 2735-2752Silva, J.J.J., Osakabe, A.L., Pavanelli, W.R., Silva, J.S., Franco, D.W., (2007) Br. J. Pharmacol, 152, pp. 112-121Lang, D.R., Davis, J.A., Lopes, L.G.F., Ferro, A.A., Vasconcellos, L.C.G., Franco, D.W., Tfouni, E., Clarke, M.J., (2000) Inorg. Chem, 39, pp. 2294-2300Wong, K.Y., Che, C.M., Yip, W.H., Wang, R.J., Mak, T.C.W., (1992) J. Chem. Soc., Dalton Trans, pp. 1417-1421Yang, S.M., Cheng, W.C., Cheung, K.K., Che, C.M., Peng, S.M., (1995) J. Chem. Soc., Dalton Trans, pp. 227-230Yang, S.M., Chan, M.C.W., Peng, S.M., Che, C.M., (1998) Organometallics, 17, pp. 151-155Gott, A.L., McGowan, P.C., Podesta, T.J., Thornton-Pett, M., (2002) J. Chem. Soc., Dalton Trans, pp. 3619-3623Cheng, W.C., Fung, W.H., Che, C.M., (1996) J. Mol. Catal. A: Chem, 113, pp. 311-319Fung, W.H., Yu, W.Y., Che, C.M., (1998) J. Org. Chem, 63, pp. 2873-2877Batista, A.A., Pereira, C., Queiroz, S.L., deOliveira, L.A.A., Santos, R.H.D., Gambardella, M.T.D., (1997) Polyhedron, 16, pp. 927-931Perrin, D.D., Armarego, W.L.F., Perrin, D.R., (1980) Purification of Laboratory Chemicals, , 2nd edPergamon Press Ltd: OxfordShriver, D.F., (1969) The Manipulation of Air Sensitive Compounds, , MacGraw-Hill Co: New YorkFensterbank, H., Zhu, J.R., Riou, D., Larpent, C., (1999) J. Chem. Soc., Perkin Trans. 1, pp. 811-815Nonius, B.V., (1997) COLLECT, , Enraf-Nonius: Delft, The Netherlands, 2000Otwinowsk, Z.Minor, W. HKL Denzo and Scalepack. In Methods in EnzymologyCarter, C. W., Jr., Sweet, R. M., Eds.Academic Press: New York, 1997276, pp 307-326Coppens, P., Leiserow, L., Rabinovi, D., (1965) Acta Crystallogr, pp. 18-1035Sheldrick, G.M., (1997) SHELXS-97. Program for Crystal Structure Resolution, , Univ.of Göttingen: Göttingen, GermanySheldrick, G.M., (1997) Program for Crystal Structures Analysis, , Univ. of Göttingen: Göttingen, GermanyFarrugia, L.J., (1997) J. App. Crystallogr, 30, p. 565Lawrence, G.A., Martinez, M., Skelton, B.W., White, A.H., (1992) J. Chem. Soc., Dalton Trans, pp. 1649-1652Stynes, H.C., Ibers, J.A., (1971) Inorg. Chem, 10, p. 2304Wishart, J.F., Bino, A., Taube, H., (1986) Inorg. Chem, 25, pp. 3318-3321Hambley, T.W., Lay, P.A., (1986) Inorg. Chem, 25, pp. 4553-4558Bezerra, C.W.B., da Silva, S.C., Gambardella, M.T.P., Santos, R.H.A., Plicas, L.M.A., Tfouni, E., Franco, D.W., (1999) Inorg. Chem, 38, pp. 5660-5667Gress, M.E., Creutz, C., Quicksall, C.O., (1981) Inorg. Chem, 20, pp. 1522-1528Emel'yanov, V.A., Virovets, A.V., Baidina, I.A., Gromilov, S.A., Belyaev, A.V., (2001) Inorg. Chem. Commun, 4, pp. 33-35Borges, S.D.S., Davanzo, C.U., Castellano, E.E., Schpector, J., Silva, S.C., Franco, D.W., (1998) Inorg. Chem, 37, pp. 2670-2677Szczepura, L.F., Muller, J.G., Bessel, C.A., See, R.F., Janik, T.S., Churchill, M.R., Takeuchi, K.J., (1992) Inorg. Chem, 31, pp. 859-869Veal, J.T., Hodgson, D.J., (1972) Inorg. Chem, 11, p. 1420Cavarzan, D.A., Caetano, F.R., Romualdo, L.L., do Nascimento, F.B., Batista, A.A., Ellena, J., Barison, A., de Araujo, M.P., (2006) Inorg. Chem. Commun, 9, pp. 1247-1250McGarvey, B.R., Batista, N.C., Bezerra, C.W.B., Schultz, M.S., Franco, D.W., (1998) Inorg. Chem, 37, pp. 2865-2872Toma, H.E., Alexiou, A.D.P., Formiga, A.L.B., Nakamura, M., Dovidauskas, S., Eberlin, M.N., Tomazela, D.M., (2005) Inorg. Chim. Acta, 358, pp. 2891-2899Toma, S.H., Uemi, M., Nikolaou, S., Tomazela, D.M., Eberlin, M.N., Toma, H.E., (2004) Inorg. Chem, 43, pp. 3521-3527Toma, S.H., Nikolaou, S., Tomazela, D.M., Eberlin, M.N., Toma, H.E., (2004) Inorg. Chim. Acta, 357, pp. 2253-2260Tomazela, D.M., Gozzo, F.C., Mayer, I., Engelmann, R.M., Araki, K., Toma, H.E., Eberlin, M.N., (2004) J. Mass. Spectrom, 39, pp. 1161-1167Mayer, I., Formiga, A.L.B., Engelmann, F.M., Winnischofer, H., Oliveira, P.V., Tomazela, D.M., Eberlin, M.N., Araki, K., (2005) Inorg. Chim. Acta, 358, pp. 2629-2642Mayer, I., Eberlin, M.N., Tomazela, D.M., Toma, H.E., Araki, K., (2005) J. Braz. Chem. Soc, 16, pp. 418-425Slocik, J.M., Somayajula, K.V., Shepherd, R.E., (2001) Inorg. Chim. Acta, 320, pp. 148-158Shepherd, R.E., Slocik, J.M., Stringfield, T.W., Somayajula, K.V., Amoscato, A.A., (2004) Inorg. Chim. Acta, 357, pp. 965-979Stringfield, T.W., Somayajula, K.V., Muddiman, D.C., Flora, J.W., Shepherd, R.E., (2003) Inorg. Chim. Acta, 343, pp. 317-328Von Poelhsitz, G., Bogado, A.L., de Souza, G.D., Rodrigues, E., Batista, A.A., de Araujo, M.P., (2007) Inorg. Chem. Commun, 10, pp. 133-138Richter-Addo, G.B., Legzdins, P., (1992) Metal Nitrosyls, , Oxford University Press: New YorkSchreiner, A.F., Gunter, J.D., Hamm, D.J., Lin, S.W., Hauser, P.J., Hopcus, E.A., (1972) Inorg. Chem, 11, p. 880Gorelsky, S.I., da Silva, S.C., Lever, A.B.P., Franco, D.W., (2000) Inorg. Chim. Acta, 300, pp. 698-708Doro, F.G., Rodrigues, U.P., Tfouni, E., (2007) J. Colloid Interface Sci, 307, pp. 405-417Bordini, J., Ford, P.C., Tfouni, E., (2005) Chem. Commun, pp. 4169-4171Ferreira, K.Q., Schneider, J.F., Nascente, P.A.P., Rodrigues, U.P., Tfouni, E., (2006) J. Colloid Interface Sci, 300, pp. 543-552Zanichelli, P.G., Sernaglia, R.L., Franco, D.W., (2006) Langmuir, 22, pp. 203-20

    Deposition Of Organicinorganic Hybrid Coatings Over 316l Surgical Stainless Steel And Evaluation On Vascular Cells

    No full text
    Surface coating of metallic materials using the sol-gel technique is a suitable approach to obtain hybrid materials with improved properties for biomedical applications. In this study, an AISI 316L stainless steel surface was coated with ormosils prepared from tetraethylsiloxane and 3-glycidoxypropyltrimethoxysilane or polydimethylsiloxane. The characterization of structural and surface properties was performed by several techniques. Surface microstructure, morphology, and energy are dependent on organosilane type and content. Chemical stability of coatings was investigated by static immersion tests in phosphate buffer solution at 37 °C, and silicon leaching after 21 days was found to be in the range of 200300 μg L-1. Mechanical adhesion was found to be within 1.0 and 3.7 N cm-1. The interaction of the samples and materials in the cardiovascular environment was investigated through cellular behavior. Biological assays were performed with slides to avoid any cytotoxic effects on human endothelial cells (HUVEC) and rabbit arterial smooth muscle cells (RASM). No significant alterations were observed after 24 h in the viability of RASM and HUVEC cells exposed to different coatings. No increase of HUVEC or RASM migration was observed after 24 h as evaluated by transwell migration assay. The hybrid materials showed suitable properties for potential application as biomaterials in cardiovascular environment as well as for incorporation of bioactive species with the aim to prepare drug-eluting stents.9210987995Hanawa, T., (2012) Sci. Technol. Adv. Mater., 13, p. 064102Vallet-Regi, M., Colilla, M., Gonzalez, B., (2011) Chem. Soc. Rev., 40, p. 596Chiriac, A.P., Neamtu, I., Nita, L.E., Nistor, M.T., (2010) Mini-Rev. Med. Chem., 10, p. 990Lendlein, A., Behl, M., Hiebl, B., Wischke, C., (2010) Exp. Rev. Med. Dev., 7, p. 357Marrey, R.V., Burgermeister, R., Grishaber, R.B., Ritchie, R.O., (2006) Biomaterials, 27, p. 1988Anderson, J.M., (2001) Annu. Rev. Mat. Res., 31, p. 81O'Brien, B., Carroll, W., (2009) Acta Biomater., 5, p. 945Thierry, B., Tabrizian, M., (2003) J. Endovasc. Ther., 10, p. 807. , 2.0.CO;2Chaabane, C., Otsuka, F., Virmani, R., Bochaton-Piallat, M.L., (2013) Cardiovasc. Res., 99, p. 353Kraitzer, A., Kloog, Y., Zilberman, M., (2008) J. Biomed. Mater. Res., Part B, 85 B, p. 583Khan, W., Farah, S., Domb, A.J., (2012) J. Controlled Release, 161, p. 703Puranik, A.S., Dawson, E.R., Peppas, N.A., (2013) Int. J. Pharm., 441, p. 665Thipparaboina, R., Khan, W., Domb, A.J., (2013) Int. J. Pharm., 454, p. 4Gad, S.C., (2013) Standards and Methods for Assessing the Safety and Biocompatibility of Biomaterials, p. 285. , Jaffe, M. Hammond, W. Tolias, P. Arinzeh, T. Eds. Woodhead Publishing: Sawston, UKFarhatnia, Y., Tan, A., Motiwala, A., Cousins, B.G., Seifalian, A.M., (2013) Biotechnol. Adv., 31, p. 524Galli, C., Coen, M.C., Hauert, R., Katanaev, V.L., Groning, P., Schlapbach, L., (2002) Colloids Surf. B, 26, p. 255Jacobs, T., Morent, R., De Geyter, N., Dubruel, P., Leys, C., (2012) Plasma Chem. Plasma Process., 32, p. 1039Castner, D.G., Ratner, B.D., (2002) Surf. Sci., 500, p. 28Jones, C.F., Grainger, D.W., (2009) Adv. Drug Delivery Rev., 61, p. 438Brodbeck, W.G., Shive, M.S., Colton, E., Nakayama, Y., Matsuda, T., Anderson, J.M., (2001) J. Biomed. Mater. Res., 55, p. 661. , 43.0.CO;2-FCiriminna, R., Fidalgo, A., Pandarus, V., Beland, F., Ilharco, L.M., Pagliaro, M., (2013) Chem. Rev., 113, p. 6592Hench, L.L., West, J.K., (1990) Chem. Rev., 90, p. 33Hay, J.N., Raval, H.M., (2001) Chem. Mater., 13, p. 3396Galliano, P., De Damborenea, J.J., Pascual, M.J., Duran, A., (1998) J. Sol-Gel Sci. Technol., 13, p. 723Gallardo, J., Duran, A., De Damborenea, J.J., (2004) Corros. Sci., 46, p. 795Guglielmi, M., (1997) J. Sol-Gel Sci. Technol., 8, p. 443Wang, D., Bierwagen, G.R., (2009) Prog. Org. Coat., 64, p. 327Metroke, T.L., Parkhill, R.L., Knobbe, E.T., (2001) Prog. Org. Coat., 41, p. 233Galvan, J.C., Saldana, L., Multigner, M., Calzado-Martin, A., Larrea, M., Serra, C., Vilaboa, N., Gonzalez-Carrasco, J.L., (2012) J. Mater. Sci.: Mater. Med., 23, p. 657Wen, J.Y., Wilkes, G.L., (1996) Chem. Mater., 8, p. 1667Avnir, D., Coradin, T., Lev, O., Livage, J., (2006) J. Mater. Chem., 16, p. 1013Coradin, T., Boissiere, M., Livage, J., (2006) Curr. Med. Chem., 13, p. 99Gupta, R., Kumar, A., (2008) Biomed. Mater., 3, p. 034005Bottcher, H., Slowik, P., Suss, W., (1998) J. Sol-Gel Sci. Technol., 13, p. 277Asefa, T., Tao, Z.M., (2012) Can. J. Chem., 90 (12), p. 1015Tsuru, K., Hayakawa, S., Osaka, A., (2004) J. Sol-Gel Sci. Technol., 32, p. 201Hetrick, E.M., Schoenfisch, M.H., (2006) Chem. Soc. Rev., 35, p. 780Tfouni, E., Truzzi, D.R., Tavares, A., Gomes, A.J., Figueiredo, L.E., Franco, D.W., (2012) Nitric Oxide, 26, p. 38Tfouni, E., Doro, F.G., Gomes, A.J., Da Silva, R.S., Metzker, G., Benini, P.G.Z., Franco, D.W., (2010) Coord. Chem. Rev., 254, p. 355Brinker, C.J., (1988) J. Non-Cryst. Solids, 100, p. 31Owens, D.K., Wendt, R.C., (1969) J. Appl. Polym. Sci., 13, p. 1741(2007) Standard Test Methods for 707 Peel Strength of Adhesive Bonds, , Designation D-1000American Society for Testing and Materials, West Conchohoken, PABuonassisi, V., Venter, J.C., (1976) Proc. Natl. Acad. Sci. U.S.A., 73, p. 1612Janiszewski, M., Lopes, L.R., Carmo, A.O., Pedro, M.A., Brandes, R.P., Santos, C.X.C., Laurindo, F.R.M., (2005) J. Biol. Chem., 280, p. 40813Mosmann, T., (1983) J. Immunol. Methods, 65, p. 55Morshed, M.M., McNamara, B.P., Cameron, D.C., Hashmi, M.S.J., (2003) Surf. Coat. Technol., 163, p. 541Joung, Y.K., Kim, H.I., Kim, S.S., Chung, K.H., Jang, Y.S., Park, K.D., (2003) J. Controlled Release, 92, p. 83Meth, S., Sukenik, C.N., (2003) Thin Solid Films, 425, p. 49Metroke, T.L., Kachurina, O., Knobbe, E.T., (2002) Prog. Org. Coat., 44, p. 295Yabuta, T., Tsuru, K., Hayakawa, S., Osaka, A., (2004) J. Sol-Gel Sci. Technol., 31, p. 273Richards, R.E., Thompson, H.W., (1949) J. Chem. Soc., p. 124Chazalviel, J.N., Rodrigues, U.P., (2012) Thin Solid Films, 520, p. 3918Velasco, M.J., Rubio, J., Oteo, J.L., (2001) Bol. Soc. Esp. Ceram. Vidrio, 40, p. 37Innocenzi, P., Brusatin, G., Guglielmi, M., Bertani, R., (1999) Chem. Mater., 11, p. 1672Yim, H., Kent, M.S., Tallant, D.R., Garcia, M.J., Majewski, J., (2005) Langmuir, 21, p. 4382Peeters, M.P.J., Wakelkamp, W.J.J., Kentgens, A.P.M., (1995) J. Non-Cryst. Solids, 189, p. 77Harris, R.K., Kennedy, J.D., McFarlane, W., (1978) NMR and the Periodic Table, , Academic Press: London, UKEngelhardt, G., Michel, D., (1987) High-Resolution Solid-State NMR of Silicates and Zeolites, , John Wiley & Sons: Chichester, UKKomori, Y., Nakashima, H., Hayashi, S., Sugahara, Y., (2005) J. Non-Cryst. Solids, 351, p. 97Templin, M., Wiesner, U., Spiess, H.W., (1997) Adv. Mater., 9, p. 814Uilk, J., Bullock, S., Johnston, E., Myers, S.A., Merwin, L., Wynne, K.J., (2000) Macromolecules, 33, p. 8791Fitton, J.H., Dalton, B.A., Beumer, G., Johnson, G., Griesser, H.J., Steele, J.G., (1998) J. Biomed. Mater. Res., 42, p. 245. , 23.3.CO;2-2Lee, J.N., Jiang, X., Ryan, D., Whitesides, G.M., (2004) Langmuir, 20, p. 11684Yildirim, A., Budunoglu, H., Deniz, H., Guler, M.O., Bayindir, M., (2010) Appl. Mater. Interfaces, 2, p. 2892Zhang, G., Fu, N., Zhang, H., Wang, J.Y., Hou, X.L., Yang, B., Shen, J.C., Jiang, L., (2003) Langmuir, 19, p. 2434Steele, J.G., Johnson, G., McLean, K.M., Beumer, G.J., Griesser, H.J., (2000) J. Biomed. Mater. Res., 50, p. 475. , 43.0.CO;2-GCeyhan, T., Tatlier, M., Akcakaya, H., (2007) J. Mater. Sci.: Mater. Med., 18, p. 1557Dave, B.C., Hu, X.K., Devaraj, Y., Dhali, S.K., (2004) J. Sol-Gel Sci. Technol., 32, p. 143Veranth, J.M., In Vitro Models for Nanoparticle Toxicology (2008) Nanoscience and Nanotechnology: Environmental and Health Impacts, p. 261. , Grassian, V. H. Eds. John Wiley & Sons: Hoboken, NJLiu, X., Sun, J.A., (2010) Biomaterials, 31, p. 8198Ma, Z.W., Mao, Z.W., Gao, C.Y., (2007) Colloids Surf. B, 60, p. 13

    Author Correction: Proton acceleration in thermonuclear nova explosions revealed by gamma rays (Nature Astronomy, (2022), 6, 6, (689-697), 10.1038/s41550-022-01640-z)

    No full text
    In the version of this article initially published, there was an error in the scale described in the right-hand y-axis label of Fig. 1. Flux density (Jy), now presented on a scale from “1, 10, 102”, was originally shown as “10, 102”. The image has been corrected in the HTML and PDF versions of the article. Further, the Source Data for Fig. 1 have now been replaced online

    A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations

    No full text
    Extended and delayed emission around distant TeV sources induced by the effects of propagation of gamma rays through the intergalactic medium can be used for the measurement of the intergalactic magnetic field (IGMF). We search for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with the goal to detect or constrain the IGMF-dependent secondary flux generated during the propagation of TeV gamma rays through the intergalactic medium. We analyze the most recent MAGIC observations over a 5 year time span and complement them with historic data of the H.E.S.S. and VERITAS telescopes along with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace source evolution in the GeV-TeV band over one-and-a-half decade in time. We use Monte Carlo simulations to predict the delayed secondary gamma-ray flux, modulated by the source variability, as revealed by TeV-band observations. We then compare these predictions for various assumed IGMF strengths to all available measurements of the gamma-ray flux evolution. We find that the source flux in the energy range above 200 GeV experiences variations around its average on the 14 years time span of observations. No evidence for the flux variability is found in 1-100 GeV energy range accessible to Fermi/LAT. Non-detection of variability due to delayed emission from electromagnetic cascade developing in the intergalactic medium imposes a lower bound of B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the cosmological origin. Though weaker than the one previously derived from the analysis of Fermi/LAT data, this bound is more robust, being based on a conservative intrinsic source spectrum estimate and accounting for the details of source variability in the TeV energy band. We discuss implications of this bound for cosmological magnetic fields which might explain the baryon asymmetry of the Universe

    A lower bound on intergalactic magnetic fields from time variability of 1ES 0229+200 from MAGIC and Fermi/LAT observations

    No full text
    Extended and delayed emission around distant TeV sources induced by the effects of propagation of gamma rays through the intergalactic medium can be used for the measurement of the intergalactic magnetic field (IGMF). We search for delayed GeV emission from the hard-spectrum TeV blazar 1ES 0229+200 with the goal to detect or constrain the IGMF-dependent secondary flux generated during the propagation of TeV gamma rays through the intergalactic medium. We analyze the most recent MAGIC observations over a 5 year time span and complement them with historic data of the H.E.S.S. and VERITAS telescopes along with a 12-year long exposure of the Fermi/LAT telescope. We use them to trace source evolution in the GeV-TeV band over one-and-a-half decade in time. We use Monte Carlo simulations to predict the delayed secondary gamma-ray flux, modulated by the source variability, as revealed by TeV-band observations. We then compare these predictions for various assumed IGMF strengths to all available measurements of the gamma-ray flux evolution. We find that the source flux in the energy range above 200 GeV experiences variations around its average on the 14 years time span of observations. No evidence for the flux variability is found in 1-100 GeV energy range accessible to Fermi/LAT. Non-detection of variability due to delayed emission from electromagnetic cascade developing in the intergalactic medium imposes a lower bound of B>1.8e-17 G for long correlation length IGMF and B>1e-14 G for an IGMF of the cosmological origin. Though weaker than the one previously derived from the analysis of Fermi/LAT data, this bound is more robust, being based on a conservative intrinsic source spectrum estimate and accounting for the details of source variability in the TeV energy band. We discuss implications of this bound for cosmological magnetic fields which might explain the baryon asymmetry of the Universe

    Multi-wavelength study of the galactic PeVatron candidate LHAASO J2108+5157

    Get PDF
    LHAASO J2108+5157 is one of the few known unidentified Ultra-High-Energy (UHE) gamma-ray sources with no Very-High-Energy (VHE) counterpart, recently discovered by the LHAASO collaboration. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its High-Energy (HE) counterpart 4FGL J2108.0+5155. We found an excess (3.7 sigma) in the LST-1 data at energies E > 3 TeV. Further analysis in the whole LST-1 energy range assuming a point-like source, resulted in a hint (2.2 sigma) of hard emission which can be described with a single power law with photon index Gamma = 1.6 +- 0.2 between 0.3 - 100 TeV. We did not find any significant extended emission which could be related to a Supernova Remnant (SNR) or Pulsar Wind Nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. The LST-1 and LHAASO observations can be explained as inverse Compton dominated leptonic emission of relativistic electrons with cutoff energy of 100+70-30 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a hypothesis of Geminga-like pulsar, which would be able to power the VHE-UHE emission. LST-1 and Fermi-LAT upper limits impose strong constraints on hadronic scenario of pi-0 decay dominated emission from accelerated protons interacting with nearby molecular clouds, requiring hard spectral index, which is incompatible with the standard diffusive acceleration scenario
    corecore