100 research outputs found

    Imaging 3D seismic velocity along the seismogenic zone of Algarve region (southern Portugal)

    Get PDF
    The present seismic tomographic study is focused around Algarve region, in South of Portugal. To locate the seismic events and find the local velocity structure of epicentral area, the P and S arrival times at 38 stations are used. The data used in this study were obtained during the Algarve campaign which worked from January/2006 to July/2007. The preliminary estimate of origin times and hypocentral coordinates are determined by the Hy- poinverse program. Linearized inversion procedure was applied to comprise the following two steps: 1) finding the minimum 1D velocity model using Velest and 2) simultaneous relocation of hypocenters and determination of local velocity structure. The velocity model we have reached is a 10 layer model which gave the lowest RMS, after several runnings of eight different velocity models that we used “a priori”. The model parameterization assumes a continuous velocity field between 4.5 km/s and 7.0 km/s until 30 km depth. The earth structure is represented in 3D by velocity at discrete points, and velocity at any intervening point is determined by linear interpolation among the surrounding eight grid points. A preliminary analysis of the resolution capabilities of the dataset, based on the Derivative Weight Sum (DWS) distribution, shows that the velocity structure is better resolved in the West part of the region between the surface to15 km. The resulting tomographic image has a prominent low-velocity anomaly that shows a maximum decrease in P-wave velocity in the first 12 kms in the studied region. We also identified the occurrence of local seismic events of reduced magnitude not catalogued, in the neighbourhood of Almodôvar (low Alentejo). The spatial distribution of epicentres defines a NE-SW direction that coincides with the strike of the mapped geological faults of the region and issued from photo-interpretation. Is still expectable to refine the seismicity of the region of Almodôvar and establish more rigorously its role in the seismotectonic picture of the region. This work is expected to produce a more detailed knowledge of the structure of the crust over the region of Algarve, being able to identify seismogenic zones, potentially generators of significant seismic events and also the identification of zones of active faults

    Slip rate on the Dead Sea transform fault in northern Araba valley (Jordan)

    Get PDF
    The Araba valley lies between the southern tip of the Dead Sea and the Gulf of Aqaba. This depression, blanketed with alluvial and lacustrine deposits, is cut along its entire length by the Dead Sea fault. In many places the fault is well defined by scarps, and evidence for left-lateral strike-slip faulting is abundant. The slip rate on the fault can be constrained from dated geomorphic features displaced by the fault. A large fan at the mouth of Wadi Dahal has been displaced by about 500 m since the bulk of the fanglomerates were deposited 77–140 kyr ago, as dated from cosmogenic isotope analysis (^(10)Be in chert) of pebbles collected on the fan surface and from the age of transgressive lacustrine sediments capping the fan. Holocene alluvial surfaces are also clearly offset. By correlation with similar surfaces along the Dead Sea lake margin, we propose a chronology for their emplacement. Taken together, our observations suggest an average slip rate over the Late Pleistocene of between 2 and 6 mm yr^(−1), with a preferred value of 4 mm yr^(−1). This slip rate is shown to be consistent with other constraints on the kinematics of the Arabian plate, assuming a rotation rate of about 0.396° Myr^(−1) around a pole at 31.1°N, 26.7°E relative to Africa

    Tomografia sísmica da litosfera continental algarvia

    Get PDF
    RESUMO: O presente estudo de Tomografia é focado na região do Algarve. Para a localização dos eventos e determinação do modelo de velocidades, são utilizadas as ondas P e S. Os dados foram obtidos entre Janeiro/2006 e Julho/2007. As estimativa dos tempos de origem e coordenadas hipocentrais foram calculadas. A relocalização de eventos e inversão linear respeitaram dois passos: 1) determinação do modelo mínimo 1-D e 2) relocalização dos hipocentros e obtenção da estrutura 3-D em termos de velocidades das ondas P. ABSTRACT: The present Tomographic study is focused on Algarve region. For event location and velocity model determination P and S waves were used. Data was collected between January/2006 and July/2007. The estimation of origin times and hipocentral determination were calculated. Relocation of events and linear inversion respected two steps: 1) minimum velocity model determination and 2) hipocentral relocation and 3-D Earth structure determination in terms of P wave velocities

    Seismic behaviour of the Dead Sea fault along Araba valley, Jordan

    Get PDF
    The Dead Sea fault zone is a major left-lateral strike-slip fault. South of the Dead Sea basin, the Wadi Araba fault extends over 160 km to the Gulf of Aqaba. The Dead Sea fault zone is known to have produced several relatively large historical earthquakes. However, the historical events are unequally distributed along the fault and only four events have been reported in the Araba valley over the last few thousands of years. Magnitudes estimated from the historical record are probably slightly smaller than that of the M_w ∼ 7.3 earthquake that struck the Gulf of Aqaba in 1995. The fault cuts straight across Pleistocene to Holocene alluvium and shows morphologic evidence for essentially pure strike-slip motion. Regional seismic monitoring reveals little microseismicity along the fault except around the Dead Sea and Gulf of Aqaba, where the fault splays into complex pull-apart basin fault systems. We have investigated the fault zone at several sites selected from SPOT images and the study of aerial photography. At the site of the now destroyed Tilah Castle, a well-preserved wall, dated to be about 1200 yr BP (^(14)C age on charcoal), is cut by the fault and offset by 2.2 m. Comparison with offset gullies at a nearby site 3 km to the north and at three other sites, respectively 25, 50 and 65 km to the south, reveals that this specific fault displacement is probably related to the last seismic event that ruptured that fault segment, possibly in AD 1458. Moreover, the offset gullies suggest a characteristic slip behaviour with recurring slip of about 1.5 m on average. Given the 4 ± 2 mm yr^(−1) slip rate derived for this fault segment, we infer that the fault should produce M_w ∼ 7 earthquakes along some segment in the Araba valley about every 200 years. The historical period, with only four well-documented large earthquakes in AD 1068, AD 1212, AD 1293 and AD 1458, thus appears to have been relatively quiescent, with a 20 per cent deficit of M_w ∼ 7 earthquakes. However, our data do not exclude the possibility of larger M_w ∼ 7.6 earthquakes or time clustering of earthquakes over longer timespans. An alternative seismic behaviour involves M_w ∼ 7.6 earthquakes about every 6000 years and M_w ∼ 7 earthquakes about every 250 years. The historical catalogue would then appear to be complete for M_w ∼ 7 earthquakes
    corecore