1,269 research outputs found

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe

    On the effect of image denoising on galaxy shape measurements

    Full text link
    Weak gravitational lensing is a very sensitive way of measuring cosmological parameters, including dark energy, and of testing current theories of gravitation. In practice, this requires exquisite measurement of the shapes of billions of galaxies over large areas of the sky, as may be obtained with the EUCLID and WFIRST satellites. For a given survey depth, applying image denoising to the data both improves the accuracy of the shape measurements and increases the number density of galaxies with a measurable shape. We perform simple tests of three different denoising techniques, using synthetic data. We propose a new and simple denoising method, based on wavelet decomposition of the data and a Wiener filtering of the resulting wavelet coefficients. When applied to the GREAT08 challenge dataset, this technique allows us to improve the quality factor of the measurement (Q; GREAT08 definition), by up to a factor of two. We demonstrate that the typical pixel size of the EUCLID optical channel will allow us to use image denoising.Comment: Accepted for publication in A&A. 8 pages, 5 figure

    Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints

    Full text link
    Regularization of ill-posed linear inverse problems via 1\ell_1 penalization has been proposed for cases where the solution is known to be (almost) sparse. One way to obtain the minimizer of such an 1\ell_1 penalized functional is via an iterative soft-thresholding algorithm. We propose an alternative implementation to 1\ell_1-constraints, using a gradient method, with projection on 1\ell_1-balls. The corresponding algorithm uses again iterative soft-thresholding, now with a variable thresholding parameter. We also propose accelerated versions of this iterative method, using ingredients of the (linear) steepest descent method. We prove convergence in norm for one of these projected gradient methods, without and with acceleration.Comment: 24 pages, 5 figures. v2: added reference, some amendments, 27 page

    Maintenance of an extrachromosomal plasmid vector in mouse embryonic stem cells.

    Full text link

    Position and momentum observables on R and on R^3

    Full text link
    We characterize all position and momentum observables on R and on R^3. We study some of their operational properties and discuss their covariant joint observables.Comment: 18 page

    Two are better than one: Fundamental parameters of frame coherence

    Full text link
    This paper investigates two parameters that measure the coherence of a frame: worst-case and average coherence. We first use worst-case and average coherence to derive near-optimal probabilistic guarantees on both sparse signal detection and reconstruction in the presence of noise. Next, we provide a catalog of nearly tight frames with small worst-case and average coherence. Later, we find a new lower bound on worst-case coherence; we compare it to the Welch bound and use it to interpret recently reported signal reconstruction results. Finally, we give an algorithm that transforms frames in a way that decreases average coherence without changing the spectral norm or worst-case coherence

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Compressed sensing imaging techniques for radio interferometry

    Get PDF
    Radio interferometry probes astrophysical signals through incomplete and noisy Fourier measurements. The theory of compressed sensing demonstrates that such measurements may actually suffice for accurate reconstruction of sparse or compressible signals. We propose new generic imaging techniques based on convex optimization for global minimization problems defined in this context. The versatility of the framework notably allows introduction of specific prior information on the signals, which offers the possibility of significant improvements of reconstruction relative to the standard local matching pursuit algorithm CLEAN used in radio astronomy. We illustrate the potential of the approach by studying reconstruction performances on simulations of two different kinds of signals observed with very generic interferometric configurations. The first kind is an intensity field of compact astrophysical objects. The second kind is the imprint of cosmic strings in the temperature field of the cosmic microwave background radiation, of particular interest for cosmology.Comment: 10 pages, 1 figure. Version 2 matches version accepted for publication in MNRAS. Changes includes: writing corrections, clarifications of arguments, figure update, and a new subsection 4.1 commenting on the exact compliance of radio interferometric measurements with compressed sensin

    lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers

    Full text link
    We assume data sampled from a mixture of d-dimensional linear subspaces with spherically symmetric distributions within each subspace and an additional outlier component with spherically symmetric distribution within the ambient space (for simplicity we may assume that all distributions are uniform on their corresponding unit spheres). We also assume mixture weights for the different components. We say that one of the underlying subspaces of the model is most significant if its mixture weight is higher than the sum of the mixture weights of all other subspaces. We study the recovery of the most significant subspace by minimizing the lp-averaged distances of data points from d-dimensional subspaces, where p>0. Unlike other lp minimization problems, this minimization is non-convex for all p>0 and thus requires different methods for its analysis. We show that if 0<p<=1, then for any fraction of outliers the most significant subspace can be recovered by lp minimization with overwhelming probability (which depends on the generating distribution and its parameters). We show that when adding small noise around the underlying subspaces the most significant subspace can be nearly recovered by lp minimization for any 0<p<=1 with an error proportional to the noise level. On the other hand, if p>1 and there is more than one underlying subspace, then with overwhelming probability the most significant subspace cannot be recovered or nearly recovered. This last result does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1 and for estimates relying on it), asymptotic dependence of probabilities and constants on D and d and further clarifications; for simplicity it assumes uniform distributions on spheres. V4: minor revision for the published versio

    Fluorescence kinetics of flavin adenine dinucleotide in different microenvironments

    Get PDF
    Fluorescence kinetics of flavin adenine dinucleotide was measured in a wide time and spectral range in different media, affecting its intra- end extramolecular interactions, and analyzed by a new method based on compressed sensing
    corecore