1,269 research outputs found
Shearlets and Optimally Sparse Approximations
Multivariate functions are typically governed by anisotropic features such as
edges in images or shock fronts in solutions of transport-dominated equations.
One major goal both for the purpose of compression as well as for an efficient
analysis is the provision of optimally sparse approximations of such functions.
Recently, cartoon-like images were introduced in 2D and 3D as a suitable model
class, and approximation properties were measured by considering the decay rate
of the error of the best -term approximation. Shearlet systems are to
date the only representation system, which provide optimally sparse
approximations of this model class in 2D as well as 3D. Even more, in contrast
to all other directional representation systems, a theory for compactly
supported shearlet frames was derived which moreover also satisfy this
optimality benchmark. This chapter shall serve as an introduction to and a
survey about sparse approximations of cartoon-like images by band-limited and
also compactly supported shearlet frames as well as a reference for the
state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data",
Birkh\"auser-Springe
On the effect of image denoising on galaxy shape measurements
Weak gravitational lensing is a very sensitive way of measuring cosmological
parameters, including dark energy, and of testing current theories of
gravitation. In practice, this requires exquisite measurement of the shapes of
billions of galaxies over large areas of the sky, as may be obtained with the
EUCLID and WFIRST satellites. For a given survey depth, applying image
denoising to the data both improves the accuracy of the shape measurements and
increases the number density of galaxies with a measurable shape. We perform
simple tests of three different denoising techniques, using synthetic data. We
propose a new and simple denoising method, based on wavelet decomposition of
the data and a Wiener filtering of the resulting wavelet coefficients. When
applied to the GREAT08 challenge dataset, this technique allows us to improve
the quality factor of the measurement (Q; GREAT08 definition), by up to a
factor of two. We demonstrate that the typical pixel size of the EUCLID optical
channel will allow us to use image denoising.Comment: Accepted for publication in A&A. 8 pages, 5 figure
Accelerated Projected Gradient Method for Linear Inverse Problems with Sparsity Constraints
Regularization of ill-posed linear inverse problems via penalization
has been proposed for cases where the solution is known to be (almost) sparse.
One way to obtain the minimizer of such an penalized functional is via
an iterative soft-thresholding algorithm. We propose an alternative
implementation to -constraints, using a gradient method, with
projection on -balls. The corresponding algorithm uses again iterative
soft-thresholding, now with a variable thresholding parameter. We also propose
accelerated versions of this iterative method, using ingredients of the
(linear) steepest descent method. We prove convergence in norm for one of these
projected gradient methods, without and with acceleration.Comment: 24 pages, 5 figures. v2: added reference, some amendments, 27 page
Position and momentum observables on R and on R^3
We characterize all position and momentum observables on R and on R^3. We
study some of their operational properties and discuss their covariant joint
observables.Comment: 18 page
Two are better than one: Fundamental parameters of frame coherence
This paper investigates two parameters that measure the coherence of a frame:
worst-case and average coherence. We first use worst-case and average coherence
to derive near-optimal probabilistic guarantees on both sparse signal detection
and reconstruction in the presence of noise. Next, we provide a catalog of
nearly tight frames with small worst-case and average coherence. Later, we find
a new lower bound on worst-case coherence; we compare it to the Welch bound and
use it to interpret recently reported signal reconstruction results. Finally,
we give an algorithm that transforms frames in a way that decreases average
coherence without changing the spectral norm or worst-case coherence
Efficient Resolution of Anisotropic Structures
We highlight some recent new delevelopments concerning the sparse
representation of possibly high-dimensional functions exhibiting strong
anisotropic features and low regularity in isotropic Sobolev or Besov scales.
Specifically, we focus on the solution of transport equations which exhibit
propagation of singularities where, additionally, high-dimensionality enters
when the convection field, and hence the solutions, depend on parameters
varying over some compact set. Important constituents of our approach are
directionally adaptive discretization concepts motivated by compactly supported
shearlet systems, and well-conditioned stable variational formulations that
support trial spaces with anisotropic refinements with arbitrary
directionalities. We prove that they provide tight error-residual relations
which are used to contrive rigorously founded adaptive refinement schemes which
converge in . Moreover, in the context of parameter dependent problems we
discuss two approaches serving different purposes and working under different
regularity assumptions. For frequent query problems, making essential use of
the novel well-conditioned variational formulations, a new Reduced Basis Method
is outlined which exhibits a certain rate-optimal performance for indefinite,
unsymmetric or singularly perturbed problems. For the radiative transfer
problem with scattering a sparse tensor method is presented which mitigates or
even overcomes the curse of dimensionality under suitable (so far still
isotropic) regularity assumptions. Numerical examples for both methods
illustrate the theoretical findings
Compressed sensing imaging techniques for radio interferometry
Radio interferometry probes astrophysical signals through incomplete and
noisy Fourier measurements. The theory of compressed sensing demonstrates that
such measurements may actually suffice for accurate reconstruction of sparse or
compressible signals. We propose new generic imaging techniques based on convex
optimization for global minimization problems defined in this context. The
versatility of the framework notably allows introduction of specific prior
information on the signals, which offers the possibility of significant
improvements of reconstruction relative to the standard local matching pursuit
algorithm CLEAN used in radio astronomy. We illustrate the potential of the
approach by studying reconstruction performances on simulations of two
different kinds of signals observed with very generic interferometric
configurations. The first kind is an intensity field of compact astrophysical
objects. The second kind is the imprint of cosmic strings in the temperature
field of the cosmic microwave background radiation, of particular interest for
cosmology.Comment: 10 pages, 1 figure. Version 2 matches version accepted for
publication in MNRAS. Changes includes: writing corrections, clarifications
of arguments, figure update, and a new subsection 4.1 commenting on the exact
compliance of radio interferometric measurements with compressed sensin
lp-Recovery of the Most Significant Subspace among Multiple Subspaces with Outliers
We assume data sampled from a mixture of d-dimensional linear subspaces with
spherically symmetric distributions within each subspace and an additional
outlier component with spherically symmetric distribution within the ambient
space (for simplicity we may assume that all distributions are uniform on their
corresponding unit spheres). We also assume mixture weights for the different
components. We say that one of the underlying subspaces of the model is most
significant if its mixture weight is higher than the sum of the mixture weights
of all other subspaces. We study the recovery of the most significant subspace
by minimizing the lp-averaged distances of data points from d-dimensional
subspaces, where p>0. Unlike other lp minimization problems, this minimization
is non-convex for all p>0 and thus requires different methods for its analysis.
We show that if 0<p<=1, then for any fraction of outliers the most significant
subspace can be recovered by lp minimization with overwhelming probability
(which depends on the generating distribution and its parameters). We show that
when adding small noise around the underlying subspaces the most significant
subspace can be nearly recovered by lp minimization for any 0<p<=1 with an
error proportional to the noise level. On the other hand, if p>1 and there is
more than one underlying subspace, then with overwhelming probability the most
significant subspace cannot be recovered or nearly recovered. This last result
does not require spherically symmetric outliers.Comment: This is a revised version of the part of 1002.1994 that deals with
single subspace recovery. V3: Improved estimates (in particular for Lemma 3.1
and for estimates relying on it), asymptotic dependence of probabilities and
constants on D and d and further clarifications; for simplicity it assumes
uniform distributions on spheres. V4: minor revision for the published
versio
Fluorescence kinetics of flavin adenine dinucleotide in different microenvironments
Fluorescence kinetics of flavin adenine dinucleotide was measured in a wide time and spectral range in different media, affecting its intra- end extramolecular interactions, and analyzed by a new method based on compressed sensing
- …