13 research outputs found

    Fluorescence Enhanced Optical Resonator Constituted of Quantum Dots and Thin Film Resonant Cavity for High-Efficiency Reflective Color Filter

    No full text
    Conventional color filters selectively absorb a part of the backlight while reflecting or transmitting other light, resulting in the problem of low efficiency and energy wasting. For this problem, a new concept of fluorescence enhanced optical resonator was proposed and verified in this paper. The new structure consists of structural color filter and light-conversion material. Specially, a thin film resonant cavity was designed, and InP/ZnSe/ZnS quantum dots were inserted inside the resonator. When illuminated by sunlight, the novel fluorescence enhanced optical resonator could not only reflect the specific light, but also convert absorbed energy into desired light, leading to the utilization efficiency improvement of solar energy. An all-dielectric red fluorescence enhanced optical resonator was fabricated, with peak equivalent reflectance up to 105%. Compared with a thin film resonator, the enhancement coefficient of the as-proposed structure is about 124%. The new optical structure can utilize solar source efficiently, showing application potential as the next generation of reflective color filters for display

    Exploration on Innovation in Planning and Design of Pastoral Complex

    No full text
    Based on the background and development of the pastoral complex, it is believed that the pastoral complex is an inevitable trend of the development of modern agriculture and it is the product of agriculture developing to a higher stage following agricultural industrial park, beautiful countryside, characteristic town, and whole area tourism. Combined with many years of planning and design practice of Wuhan Modern Urban Agriculture Planning and Design Institute, this paper summarized ideas of construction and operation of the pastoral complex, and discussed the construction of pastoral complex planning system, in the hope of providing certain reference for planning of pastoral complex in the whole country in the new period. Finally, through the overview of development history and highlight of urban agriculture in Wuhan, it came up with measures and recommendations for development of pastoral complex in Wuhan City

    Levels and Clinical Significance of Regulatory B Cells and T Cells in Acute Myeloid Leukemia

    No full text
    Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy, whose immunological mechanisms are still partially uncovered. Regulatory B cells (Bregs) and CD4+ regulatory T cells (Tregs) are subgroups of immunoregulatory cells involved in modulating autoimmunity, inflammation, and transplantation reactions. Herein, by studying the number and function of Breg and Treg cell subsets in patients with AML, we explored their potential role in the pathogenesis of AML. Newly diagnosed AML patients, AML patients in complete remission, and healthy controls were enrolled. Flow cytometry was used to detect percentages of Bregs and Tregs. ELISA was conducted to detect IL-10 and TGF-β in plasma. The mRNA levels of IL-10 and Foxp3 were measured with RT-qPCR. The relationship of Bregs and Tregs with the clinicopathological parameters was analyzed. There was a significant reduction in the frequencies of Bregs and an increase of Tregs in newly diagnosed AML patients compared with healthy controls. Meanwhile, patients in complete remission exhibited levels of Bregs and Tregs comparable to healthy controls. Furthermore, compared with healthy controls and AML patients in complete remission, newly diagnosed AML patients had increased plasma IL-10 but reduced TGF-β. IL-10 and Foxp3 mRNA levels were upregulated in the newly diagnosed AML patients. However, there were no significant differences in IL-10 and Foxp3 mRNA levels between patients in complete remission and healthy controls. Bregs and Tregs have abnormal distribution in AML patients, suggesting that they might play an important role in regulating immune responses in AML

    Platinum-based heterogeneous nanomaterials via wet-chemistry approaches toward electrocatalytic applications

    No full text
    The heterogeneously structured nanomaterials usually exhibit enhanced catalytic properties in comparison with each one of the constituent materials due to the synergistic effect among their different domains. Within the last decade, the development of wet-chemistry methods leads to the blossom of research in materials with heterogeneous nanostructures, which creates great opportunities also a tremendous challenge to apply these materials for highly efficient energy conversion. We herein would systematically introduce the latest research developments in Pt-based nanomaterials with heterogeneous structures, e.g. core-shell, hollow interiors, stellated/dendritic morphologies, dimeric, or composite construction, and their potential applications as electrocatalysts toward direct methanol fuel cell reactions, including methanol oxidation reaction and oxygen reduction reaction in acidic conditions, aiming at the summarization of the fundamentals and technical approaches in synthesis, fabrication and processing of heterogeneous nanomaterials sous to provide the readers a systematic and coherent picture of the filed. This review will focus on the intrinsic relationship between the catalytic properties and the physical or/ and chemical effects in the heterogeneous nanomaterials, providing for technical bases for effectively developing novel electrocatalyts with low cost, enhanced activity and high selectivity. (C) 2016 Elsevier B.V. All rights reserved

    An Image Unmixing and Stitching Deep Learning Algorithm for In-Screen Fingerprint Recognition Application

    No full text
    The market share of organic light-emitting diode (OLED) screens in consumer electronics has grown rapidly in recent years. In order to increase the screen-to-body ratio of OLED phones, under-screen or in-screen fingerprint recognition is a must-have option. Current commercial hardware schemes include adhesive, ultrasonic, and under-screen optical ones. No mature in-screen solution has been proposed. In this work, we designed and manufactured an OLED panel with an in-screen fingerprint recognition system for the first time, by integrating an active sensor array into the OLED panel. The sensor and display module share the same set of fabrication processes when manufactured. Compared with the current widely commercially available under-screen schemes, the proposed in-screen solution can achieve a much larger functional area, better flexibility, and smaller thickness, while significantly reducing module cost. A point light source scheme, implemented by lighting up a single or several adjacent OLED pixels, instead of a conventional area source scheme as in the CMOS image sensor, or a CIS-based solution, has to be adopted since the optical distance is not long enough due to the integration. We designed a pattern for the point light sources and developed an optical unmixing network model to realize the unmixing and stitching of images obtained by each point light source at the same exposure time. After training, data verification of this network model shows that this deep learning algorithm outputs a stitched image of large area and high quality, where FRR = 0.7% given FAR = 1:50 k. In despite of a poorer quality of raw images and a much more complex algorithm compared with current commercial solutions, the proposed algorithm still obtains results comparable to peer studies, proving the effectiveness of our algorithm. Thus, the time required for fingerprint capture in our in-screen scheme is greatly reduced, by which one of the main obstacles for commercial application is overcome

    Tailoring the Selectivity of Bimetallic Copper–Palladium Nanoalloys for Electrocatalytic Reduction of CO<sub>2</sub> to CO

    No full text
    Controlling the morphology and composition of bimetallic nanoalloys is an effective way to tailor their catalytic activity/selectivity for a given chemical reaction. Herein, we demonstrate the tailoring of bimetallic copper–palladium (Cu–Pd) nanoalloys with different morphologies and compositions for obtaining highly efficient electrocatalysts for the reduction of CO<sub>2</sub> to CO. We further evaluate the catalytic performance of these Cu–Pd nanomaterials for the electrochemical conversion of CO<sub>2</sub> to CO. In particular, the spherical Cu–Pd nanoalloys with Cu/Pd molar ratio of 1/0.3 have the highest Faradaic efficiency for CO conversion (93%), while the dendritic Cu–Pd nanoalloys have the highest Faradaic efficiency for H<sub>2</sub> production (65.2%) via hydrogen evolution reaction at a polarized potential of −0.87 V. The balancing of the rate-determining steps during CO<sub>2</sub> conversion is a key factor for the observed activity/selectivity of Cu–Pd nanoalloys with different morphologies/compositions. The findings revealed in this study may shed some light on the design of cost-effective and efficient electrocatalysts for CO<sub>2</sub> conversion to CO or to other useful hydrocarbons

    Biodegradation of the Organophosphate Trichlorfon and Its Major Degradation Products by a Novel Aspergillus sydowii PA F‑2

    No full text
    Trichlorfon (TCF) is an important organophosphate pesticide in agriculture. However, limited information is known about the biodegradation behaviors and kinetics of this pesticide. In this study, a newly isolated fungus (PA F-2) from pesticide-polluted soils was identified as Aspergillus sydowii on the basis of the sequencing of internal transcribed spacer rDNA. This fungus degraded TCF as sole carbon, sole phosphorus, and sole carbon–phosphorus sources in a mineral salt medium (MSM). Optimal TCF degradation conditions were determined through response surface methodology, and results also revealed that 75.31% of 100 mg/L TCF was metabolized within 7 days. The degradation of TCF was accelerated, and the mycelial dry weight of PA F-2 was remarkably increased in MSM supplemented with exogenous sucrose and yeast extract. Five TCF metabolic products were identified through gas chromatography–mass spectrometry. TCF could be initially hydrolyzed to dichlorvos and then be degraded through the cleavage of the P–C bond to produce dimethyl hydrogen phosphate and chloral hydrate. These two compounds were subsequently deoxidized to produce dimethyl phosphite and trichloroethanal. These results demonstrate the biodegradation pathways of TCF and promote the potential use of PA F-2 to bioremediate TCF-contaminated environments

    Exploring personalized treatment for cardiac graft rejection based on a four-archetype analysis model and bioinformatics analysis

    No full text
    Abstract Heart transplantation is the gold standard for treating patients with advanced heart failure. Although improvements in immunosuppressive therapies have significantly reduced the frequency of cardiac graft rejection, the incidences of T cell-mediated rejection (TCMR) and antibody-mediated rejection remain almost unchanged. A four-archetype analysis (4AA) model, developed by Philip F. Halloran, illustrated this problem well. It provided a new dimension to improve the accuracy of diagnoses and an independent system for recalibrating the histology guidelines. However, this model was based on the invasive method of endocardial biopsy, which undoubtedly increased the postoperative risk of heart transplant patients. Currently, little is known regarding the associated genes and specific functions of the different phenotypes. We performed bioinformatics analysis (using machine-learning methods and the WGCNA algorithm) to screen for hub-specific genes related to different phenotypes, based Gene Expression Omnibus accession number GSE124897. More immune cell infiltration was observed with the ABMR, TCMR, and injury phenotypes than with the stable phenotype. Hub-specific genes for each of the four archetypes were verified successfully using an external test set (accession number GSE2596). Logistic-regression models based on TCMR-specific hub genes and common hub genes were constructed with accurate diagnostic utility (area under the curve > 0.95). RELA, NFKB1, and SOX14 were identified as transcription factors important for TCMR/injury phenotypes and common genes, respectively. Additionally, 11 Food and Drug Administration-approved drugs were chosen from the DrugBank Database for each four-archetype model. Tyrosine kinase inhibitors may be a promising new option for transplant rejection treatment. KRAS signaling in cardiac transplant rejection is worth further investigation. Our results showed that heart transplant rejection subtypes can be accurately diagnosed by detecting expression of the corresponding specific genes, thereby enabling precise treatment or medication
    corecore