52 research outputs found

    A comparison between the effect of systemic and coated drug delivery in osteoporotic bone after dental implantation

    Get PDF
    The increased life expectancy has boomed the demand of dental implants in the elderly. As a consequence, considering the effect of poorer bone quality, due to aging or associated diseases such as osteoporosis, on the success of dental restoration is becoming increasingly important. Bisphosphonates are one of the most used drugs to overcome the effect of osteoporosis as they increase bone density. Bisphosphonates modify the physiological bone remodeling process by adhering to the bone surface, reducing the activity of osteoclasts. This study aims at comparing the effect on bone remodeling of two drug delivery methods of Bisphosphonates: local delivery by coating the implant surface and systemic delivery. A chemo-mechano-biological bone remodeling model validated in a previous paper was used here. The two drug delivery schemes were modeled by means of a finite element approach. In the systemic drug delivery case, the amount of drug that reaches the bone compartment was calculated using a pharmacokinetic model while in the local drug delivery system, the dose was calculated using Fickean diffusion. In particular, the effect of Zoledronate is studied here. The two drug delivery approaches are compared between them and with a control case with no drug. The results show that the use of Bisphosphonates increases the mechanical strength of bone, thus improving the implant fixation along time. Systemic drug delivery affects the entire skeleton, while local drug delivery only affects the area around the dental implant, which reduces the side effects of Bisphosphonates, such as increasing the mineral content, which may promote bone brittleness and microdamage far from the implant. These results support the conclusion that dental implants coated with Bisphosphonates can be a good solution for osteoporotic or low bone density patients without the long-term side effects of systemic drug delivery. © 202

    Ventricular Conduction System Modeling for Electrophysiological Simulation of the Porcine Heart

    Get PDF
    Depolarization sequences triggering mechanical contraction of the heart are largely determined by the cardiac conduction system (CS). Many biophysical models of cardiac electrophysiology still have poor representations of the CS. This work proposes a semiautomatic method for the generation of an anatomically-realistic porcine CS that reproduces ventricular activation properties in swine computational models. Personalized swine biventricular models were built from magnetic resonance images. Electrical propagation was described by the monodomain model. The CS was defined from manually-determined anatomic landmarks using geodesic paths and a fractal tree algorithm. Two CS distributions were defined, one restricted to the subendocardium and another one by performing a subendo-to-intramyocardium projection based on histological porcine data. Depolarization patterns as well as left ventricular transmural and inter-ventricular delays were assessed to describe ventricular activation by the two CS distributions. The electrical excitations calculated using the two CS distributions were in good agreement with reported activation patterns. The pig-specific subendo-intramyocardial CS led to improved reproduction of experimental activation delays in ventricular endocardium and epicardium

    Prediction and identification of physical systems by means of physically-guided neural networks with meaningful internal layers

    Get PDF
    Substitution of well-grounded theoretical models by data-driven predictions is not as simple in engineering and sciences as it is in social and economic fields. Scientific problems suffer many times from paucity of data, while they may involve a large number of variables and parameters that interact in complex and non-stationary ways, obeying certain physical laws. Moreover, a physically-based model is not only useful for making predictions, but to gain knowledge by the interpretation of its structure, parameters, and mathematical properties. The solution to these shortcomings seems to be the seamless blending of the tremendous predictive power of the data-driven approach with the scientific consistency and interpretability of physically-based models. We use here the concept of Physically-Guided Neural Networks (PGNN) to predict the input-output relation in a physical system, while, at the same time, fulfilling the physical constraints. With this goal, the internal hidden state variables of the system are associated with a set of internal neuron layers, whose values are constrained by known physical relations, as well as any additional knowledge on the system. Furthermore, when having enough data, it is possible to infer knowledge about the internal structure of the system and, if parameterized, to predict the state parameters for a particular input-output relation. We show that this approach, besides getting physically-based predictions, accelerates the training process, reduces the amount of data required to get similar accuracy, partly filters the intrinsic noise in the experimental data and improves its extrapolation capacity. (C) 2021 ElsevierB.V. All rights reserved

    Evidence-based selection on the appropriate FIT cut-off point in CRC screening programs in the COVID pandemic

    Get PDF
    Background: The COVID pandemic has forced the closure of many colorectal cancer (CRC) screening programs. Resuming these programs is a priority, but fewer colonoscopies may be available. We developed an evidence-based tool for decision-making in CRC screening programs, based on a fecal hemoglobin immunological test (FIT), to optimize the strategy for screening a population for CRC. Methods: We retrospectively analyzed data collected at a regional CRC screening program between February/2014 and November/2018. We investigated two different scenarios: not modifying vs. modifying the FIT cut-off value. We estimated program outcomes in the two scenarios by evaluating the numbers of cancers and adenomas missed or not diagnosed in due time (delayed). Results: The current FIT cut-off (20-mu g hemoglobin/g feces) led to 6, 606 colonoscopies per 100, 000 people invited annually. Without modifying this FIT cut-off value, when the optimal number of individuals invited for colonoscopies was reduced by 10-40%, a high number of CRCs and high-risk adenomas (34-135 and 73-288/100.000-people invited, respectively) will be undetected every year. When the FIT cut-off value was increased to where the colonoscopy demand matched the colonoscopy availability, the number of missed lesions per year was remarkably reduced (9-36 and 29-145/100.000 people, respectively). Moreover, the unmodified FIT scenario outcome was improved by prioritizing the selection process based on sex (males) and age, rather than randomly reducing the number invited. Conclusions: Assuming a mismatch between the availability and demand for annual colonoscopies, increasing the FIT cut-off point was more effective than randomly reducing the number of people invited. Using specific risk factors to prioritize access to colonoscopies should be also considered

    Boundary element formulation for elastoplastic analysis of axisymmetric bodies

    Get PDF
    The complete formulation of B.E.M. applied to the analysis of axisymmetric bodies acting in the plastic range is presented in this paper. The concept of derivative of a singular integral given by Mikhlin has been used in order to calculate the stresses in internal points. Also a semianalytical approach is proposed to compute the matrix coefficients, presenting the way in which it can be done and the results obtained

    Development and characterization of a microfluidic model of the tumour microenvironment

    Get PDF
    The physical microenvironment of tumours is characterized by heterotypic cell interactions and physiological gradients of nutrients, waste products and oxygen. This tumour microenvironment has a major impact on the biology of cancer cells and their response to chemotherapeutic agents. Despite this, most in vitro cancer research still relies primarily on cells grown in 2D and in isolation in nutrient- and oxygen-rich conditions. Here, a microfluidic device is presented that is easy to use and enables modelling and study of the tumour microenvironment in real-time. The versatility of this microfluidic platform allows for different aspects of the microenvironment to be monitored and dissected. This is exemplified here by real-time profiling of oxygen and glucose concentrations inside the device as well as effects on cell proliferation and growth, ROS generation and apoptosis. Heterotypic cell interactions were also studied. The device provides a live ‘window’ into the microenvironment and could be used to study cancer cells for which it is difficult to generate tumour spheroids. Another major application of the device is the study of effects of the microenvironment on cellular drug responses. Some data is presented for this indicating the device’s potential to enable more physiological in vitro drug screening

    Glioblastoma on a microfluidic chip: Generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events

    Get PDF
    Background: Glioblastoma (GBM) is one of the most lethal tumor types. Hypercellular regions, named pseudo- palisades, are characteristic in these tumors and have been hypothesized to be waves of migrating glioblastoma cells.These “waves” of cells are thought to be induced by oxygen and nutrient depletion caused by tumor-induced blood vessel occlusion. Although the universal presence of these structures in GBM tumors suggests that they may play an instrumental role in GBM’s spread and invasion, the recreation of these structures in vitro has remained challenging. Methods: Here we present a new microfluidic model of GBM that mimics the dynamics of pseudopalisade forma- tion.To do this, we embedded U-251 MG cells within a collagen hydrogel in a custom-designed microfluidic device. By controlling the medium flow through lateral microchannels, we can mimic and control blood-vessel obstruction events associated with this disease. Results: Through the use of this new system, we show that nutrient and oxygen starvation triggers a strong migratory process leading to pseudopalisade generation in vitro.These results validate the hypothesis of pseudo- palisade formation and show an excellent agreement with a systems-biology model based on a hypoxia-driven phenomenon. Conclusions: This paper shows the potential of microfluidic devices as advanced artificial systems capable of mod- eling in vivo nutrient and oxygen gradients during tumor evolution

    A Three-Dimensional B.I.E.M. Program

    Full text link
    The program PECET (Boundary Element Program in Three-Dimensional Elasticity) is presented in this paper. This program, written in FORTRAN V and implemen ted on a UNIVAC 1100,has more than 10,000 sentences and 96 routines and has a lot of capabilities which will be explained in more detail. The object of the program is the analysis of 3-D piecewise heterogeneous elastic domains, using a subregionalization process and 3-D parabolic isopara, metric boundary elements. The program uses special data base management which will be described below, and the modularity followed to write it gives a great flexibility to the package. The Method of Analysis includes an adaptive integration process, an original treatment of boundary conditions, a complete treatment of body forces, the utilization of a Modified Conjugate Gradient Method of solution and an original process of storage which makes it possible to save a lot of memory

    Comparative 3D analyses and palaeoecology of giant early amphibians (Temnospondyli: Stereospondyli)

    Get PDF
    Macroevolutionary, palaeoecological and biomechanical analyses in deep time offer the possibility to decipher the structural constraints, ecomorphological patterns and evolutionary history of extinct groups. Here, 3D comparative biomechanical analyses of the extinct giant early amphibian group of stereospondyls together with living lissamphibians and crocodiles, shows that: i) stereospondyls had peculiar palaeoecological niches with proper bites and stress patterns very different than those of giant salamanders and crocodiles; ii) their extinction may be correlated with the appearance of neosuchians, which display morphofunctional innovations. Stereospondyls weathered the end-Permian mass extinction, re-radiated, acquired gigantic sizes and dominated (semi) aquatic ecosystems during the Triassic. Because these ecosystems are today occupied by crocodilians, and stereospondyls are extinct amphibians, their palaeobiology is a matter of an intensive debate: stereospondyls were a priori compared with putative living analogous such as giant salamanders and/or crocodilians and our new results try to close this debate.Peer ReviewedPostprint (published version
    corecore