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Abstract
Substitution of well-grounded theoretical models by data-driven predictions is not as simple in engineering and sciences

s it is in social and economic fields. Scientific problems suffer many times from paucity of data, while they may involve
large number of variables and parameters that interact in complex and non-stationary ways, obeying certain physical laws.
oreover, a physically-based model is not only useful for making predictions, but to gain knowledge by the interpretation of its

tructure, parameters, and mathematical properties. The solution to these shortcomings seems to be the seamless blending of the
remendous predictive power of the data-driven approach with the scientific consistency and interpretability of physically-based

odels.
We use here the concept of Physically-Guided Neural Networks (PGNN) to predict the input–output relation in a physical

ystem, while, at the same time, fulfilling the physical constraints. With this goal, the internal hidden state variables of the
ystem are associated with a set of internal neuron layers, whose values are constrained by known physical relations, as well
s any additional knowledge on the system. Furthermore, when having enough data, it is possible to infer knowledge about the
nternal structure of the system and, if parameterized, to predict the state parameters for a particular input–output relation. We
how that this approach, besides getting physically-based predictions, accelerates the training process, reduces the amount of
ata required to get similar accuracy, partly filters the intrinsic noise in the experimental data and improves its extrapolation
apacity.
c 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Science has progressed historically through the fruitful interaction between theory and experiments, or better,
etween hypotheses and data. Additionally, since the appearance of computers in the fifties, and accelerated in
he nineties of the XXst century, simulation has been progressively recognized as the third pillar of the scientific

ethod [1].
To describe a physical phenomenon, one states the mathematical equations that control the evolution of a set

f variables (position, momentum, temperature, entropy, etc.) that completely determine the state of the system.
hat evolution depends upon a set of external stimuli, that are assumed to be known, and upon the state itself. In

his context, we distinguish between two kinds of equations: universal physical principles (conservation laws and
hysical inequalities), and the internal state equations that compile the averaged behavior of the system from its
articular internal structure. The ability of any physical–mathematical model to accurately represent the reality is
irectly related to the quality of the simplification hypotheses that drive to those state equations and to the available
xperimental data required to identify the associated parameters.

This combination of universal physical principles and phenomenological state models under well-contrasted
ypotheses has demonstrated to be highly effective to accurately predict the state and evolution of big and complex
ealistic problems, while keeping them mathematically tractable.

A new paradigm is raising, however, based on our increasing ability to collect, store, analyze, and extract
nformation from high volumes of data, a capability that is accelerating at an unprecedented rate [2,3]. Based on the
uccess of Data Science and Artificial Intelligence in fields like e-commerce [4], social sciences [5], healthcare [6],
anguage recognition [7], image-based predictions [8], etc., they are also gaining prominence in simulation-based
ngineering and sciences (SBES).

However, data gathering in Physics is soaked by centuries of scientific knowledge and the associated human
ias [9–12]; so, a “blind” algorithm without any information on that bias may lead to wrong predictions. Also,
cientific problems suffer many times from paucity of data while involving a large number of variables that interact
n complex and non-stationary ways. Therefore, we can expect poor predictive capability of purely data-based
pproaches in problems far from the training set. Finally, a physically-based model is not only useful for making
redictions, but it is expected to help in gaining knowledge by the interpretation of its structure, parameters, and
athematical properties. In fact, physical interpretability is, in many cases, at least as important as predictive

erformance. It is not strange therefore the important efforts made in “whitening” the “black box” way of working
f current machine-learning predictive algorithms [13].

One possible solution to this shortcoming of data-only models is the seamless blending of their tremendous
redictive power with the scientific consistency and interpretability of physically-based models. The term coined
or this hybrid paradigm is physically-guided data science (PGDS) [14–17]. A straightforward application of PGDS
echniques is dynamic data-driven systems (DDSBES) [18?–23]. However, one of the most important drawbacks in
urrent data-driven approaches is the need of explicitly defining the cloud of experimental values that identifies the
nternal state model (e.g. material constitutive equations in solid mechanics) with a sufficient number of points in
he whole range of interest. This forces us to perform extensive experimental campaigns that are costly in time and

oney and whose results rely on strong assumptions on the experimental model itself (e.g. uniform distribution of
tresses in uniaxial tests), that cannot be overcome due to the non-observable (non-measurable) character of some
f such state variables (e.g. stresses).

An opposite perspective is integrating physical knowledge into data science models, that is, to constrain the
rediction domain of the standard data model by physical constraints. Of course, this approach may be extended to
ny known relation between the input–output variables. One simple example of this addition of physical knowledge
as made in [14] to fill incomplete data sets coming from experimental campaigns in a reliable way. Another more
owerful approach is using physical knowledge to inform and improve the data prediction capability of neural
etworks [15–17,24–29]. However, in all these works, the physical information was introduced directly as relations
etween the input and output layers. Only in [16,17] a first attempt was made to provide the network with some
xplanatory capacity by adding some of the parameters associated with the internal state model as output.

In this paper, we extend such explanatory capability by establishing a general approach in which we distinguish
etween the universal physical laws and the internal state equations. The former are treated as constraints imposed
y the particular Physics between neuron values in the NN, with an appropriate topology, while the latter are
erived as a direct NN outcome. This will permit us to identify some of the internal neurons with internal (in
3
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general non-observable) state variables. The objective of this work is therefore to introduce this new methodology
of Physically Guided Neural Networks with Internal Variables (PGNNIV) to predict both the input–output relation
in a physical system from a sufficient set of data, as well as to infer knowledge on the system internal structure, but
always considering the constraints imposed by Physics. The corresponding NN is trained by only observable data
(e.g. displacements or velocities, forces, etc.), extracting the internal non-observable values (e.g. stresses) from the
NN output.

We show that this methodology shows a better performance in terms of faster convergence, less need of data,
data noise filtering and bias correction, and extrapolation capacity.

2. Physically-Guided Neural Networks with Internal Variables. Concept, formulation and types of
applications

2.1. General framework

We identify immediately two types of state variables in any averaged phenomenological theory: (i) observable
(measurable) variables that can be local such as the position, pressure or temperature or integral as energy variations.
These will be denoted as u, and collect all the essential variables of the problem, that is, the minimum set
of independent, in general spatial and time-dependent variables that define the observable state of the system;
(ii) internal variables, not always directly measurable, that are model-specific. In general, these internal state
variables collect the changes in the internal structure of the system. They will be denoted as η.

In the same way, we stated already that there are two types of equations: (i) universal physical laws, valid for
any problem in a certain context (e.g. non-relativistic mechanics), such as conservation of mass, linear and angular
momenta and energy. They define the time evolution of the system such as u̇ = G(u, η, f ) (G(u, η, f ) = 0 in
the non-transient case), with G a set of functions, universal for a particular family of problems and f the external
stimuli assumed to be known; (ii) state equations that define the averaged evolution of the internal variables in
terms of the current state of the system (u and η) and a set of internal parameters λ, η̇ = H(η, u, λ) (η = H(u, λ)
in the non-transient case, redefining H if necessary). These equations are most times phenomenological. Thus, their
functional form and associated parameters have to be determined from reasonable assumptions and experimental
tests. These experimental needs are one of the main bottlenecks to set up a model representing a physical system.

2.2. Physically-Guided Neural Networks with Internal Variables

2.2.1. Mathematical formulation
To predict the value of the essential variables, we define the architecture of our PGNNIV according to the

following recipe:

1. We identify the output layer with (some or all) the values of the essential variables, u, or some directly
related quantities.

2. The input layer corresponds to known values such as the external stimuli f or boundary conditions. We can
also interchange the role of the input and output variables.

3. Some predefined internal layers (PILs) are associated with the internal state variables η. The values of such
neurons may be recovered after convergence, getting the values of the internal state variables from the solution
of the system for a particular input. The difference between PILs and common internal layers is that the
mathematical constraints are applied to the neurons of the former, guiding the learning process.

4. The rest of the internal layers, connecting the input, output and PILs, follows the standard approach in NN,
so they are able to “discover” the complex relations hidden in the function H .

5. Finally, the universal laws stated in G are established in the NN as constraints between input, output and
internal layers.

Any additional physical knowledge of the system can be additionally imposed in a similar way. Moreover, we
can further supply partial or total information about the internal state model by defining a parametric state equation
η = H(u; λ), by establishing the appropriate topology for the state model network and adding additional constraints.
4
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As a result of the learning process, the relationship η = H(u) is learned and so it is the input–output
relationship. Therefore, Physically-Guided Neural Networks with Internal Variables have both predictive and
explanatory capacity.

The state model is then characterized by a neural network topology and parameters η = H(u) = H(u; W ),
nstead of an explicit relationship, where W represents the weights and biases of the neural network that are obtained
uring the training process. Sans serif notation for a functional dependence ( y = Y(x), η = H(u)) is here used to
epresent an implicit input–output relation in a NN. Indeed, the universal approximation theorem guarantees that a
ufficiently regular function may be approximated by a specific neural network with a sufficient number of layers
nd neurons and convenient activation functions [30–33], so this second approach is, at least, as general as the
tandard one, also unfolding the benefits of the neural network hardware (fast computation with GPU and TPU,
loud and distributed computing, etc.) and software such as Keras and TensorFlow (modularity, pluggability, fast
eneralization capability, etc.). All this allows for high-performance computing capabilities and scalability [34],
or major model flexibility that allows capturing strong non-linearities [35,36] and for soundness with respect to
tatistical data (heteroskedasticity, non-normality, etc.) [37–39].

emark 1. We have to remark that these variables may be spatial and/or time fields depending on the location x
nd/or time t . In these cases, we shall consider that a previous discretization step has been applied, so the time-
osition independent interpolating variables are those of the associated discretized problem. Therefore, the same
pproach can be used both for non-transient problems or for transient ones, using as variables u the algebraic values
hat define the approximated field at a certain time and interpolation point, following a step-by-step continuation
pproach.

emark 2. If no constraint is applied and no PIL is defined, we recover the classical Neural Network framework. If
he constraints are applied to the input or output layers, we recover the formulation developed by other authors for
hysically-Guided Neural Networks [15,16]. A similar approach to the one here presented was also addressed in [16]
or partial differential equations, but without using the PIL concept that is original, up to the authors’ knowledge.

emark 3. This framework allows the scientist to work only with directly measurable variables and fields,
ithout the need of establishing any a priori assumption on the expression of the internal variables, which is

undamental, since internal (non-measurable) variables are, indeed, mathematical constructs that are now determined
s a byproduct of the predictive problem.

.2.2. Construction of Physically-Guided Neural Networks with Internal Variables
Denoting the input variable x as y0, each hidden layer of ni neurons, yi , i = 1, . . . , L is defined by a functional

elation:

yi = φ( yi−1W i + bi ), (1)

here W i and bi , i = 1, . . . , L are the weights and biases, the parameters of the model, and φ : Rni → Rni is an
ctivation function. With this notation, the output variable is y = yL . The network is symbolically represented by
he relationship y = Y(x) or, denoting by W the whole set of weights and biases for a given network topology,
y = Y (x; W ). Given a set of ground truth data points D = {(x̄i , ȳi )|i = 1, . . . , N }, a quadratic mean error is used
o evaluate the network performance, MSE(W |D) =

1
N

∑N
i=1

 ȳi
− Y (x̄i

; W )
2.

Now, it is possible to train the neural network by minimizing the function MSE, getting the optimal set of weights
nd biases W . Let us now impose some constraints such that some neuron values satisfy some (physically-based)
quations, including universal laws, manifold constraints and boundary conditions. Without loss of generality, we
enote all these functions by R j , j = 1, . . . , r .

R j ( y0, . . . , yL ) = 0, j = 1, . . . , r. (2)

We can reformulate the minimization problem as:

min MSE(W |D) s.t. R j (W |D) = 0, j = 1, . . . , r. (3)

W

5
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Fig. 1. Physically-Guided Neural Network for a three hidden-layered network. The red dashed rectangles indicate the neurons in which
a certain constraint is applied (PILs). The number of internal layers between the input layer and layer 1, layer 1 and layer 3 and between
layer 3 and the output layer can be increased to allow more complex models. It is the physical constraint the one that provides the PILs
1 and 3 a physical interpretation as state variables.

Fig. 2. Augmented Neural Network equivalent to the Physically-Guided Neural Network. Each constraint is replaced by an extra output
representing the value of the constraint that, ideally, should be null.

If some of the constraints are expressed by an explicit equation, we can modify the problem (3) to make this
constraint disappear from the general formulation. Fig. 1 illustrates a Physically-Guided Neural Network for a three
hidden-layered neural network.

It is possible to reformulate (3) using a penalty approach and defining r penalty parameters p j :

min
W

MSE(W |D) +

r∑
j=1

p j
R j (W |D)

2
. (4)

This approach allows the implementation of the problem in a standard Neural-Network framework (i.e. Tensor-
low@Python) by just defining an adapted loss function that includes the penalty term OF = MSE + PEN with
EN(W ) =

∑r
j=1 p j

R j (W |D)
2.

Note that (4) may be interpreted as an auxiliary neural network with input x and output ŷ = ( y; yP ), being yP

new set of output variables, yP = (R1, . . . , Rr ) with physical meaning, whose ground-truth value is always 0,
hat is R j = 0 as illustrated in Fig. 2.

The inclusion of inequalities in the presented framework is possible using the ReLU function. Indeed, the
nclusion of a term in the penalty function with the structure pReLU( f (W ,D)) guarantees that if p is high enough,
eLU( f (W ,D)) has to be the smallest possible, ensuring that ReLU( f (W ,D)) → 0 and therefore f (W ,D) ≤ 0.
6
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This approach has two main advantages that match the two spearheads against Artificial Neural Networks (ANN)
methods:

1. From a physical point of view, we postulate some extra conditions onto the hidden variables, which allow
us to interpret them as true physically-based features, that is, as state variables of the physical problem,
overcoming the black-box problem of neural networks [40–42].

2. As the search space is reduced via constraints, the optimization algorithm is expected to learn faster, with
less information, to filter the noise incompatible with the problem physics and to discard solutions without
physical sense.

2.3. Types of problems in which Physically-Guided Neural Networks with Internal Variables may be applied

We can think of several families of problems, namely:

1. Prediction problems: The goal is now to predict the value of a set of dependent output variables y from
other independent measurable ones x. The material constitutive model or state equation is assumed to be
frozen and therefore there exists an (unknown) relationship, H , whose functional form or properties have to
be revealed. Consequently, the state equation is context-dependent and may be formulated as η = H( y) (or
η = H(x)).
When solving prediction problems, different objectives may be followed:

(a) Pure predictive problem. We establish a direct correspondence between observable variables for a
fixed system (same geometry and internal structure), without any constraint nor explicit establishment
of PILs. We use the NN in the standard black-box manner to get the correlation between the input
and output variables to predict, after training, the latter for a particular input, without any knowledge
of the physical system This has been done frequently in the last decades [43–45].

(b) Pure predictive problem with input–output constraints. The only difference with the above is the
assumption (or knowledge) of some input–output relations. Those relations are imposed via external
constraints onto the objective function of the NN without using the concept of internal state variables
or PILs. Some particular problems have been solved very recently using this methodology [16,24].

(c) Predictive and explanatory problems with internal hidden variables and constraints. We add,
instead, a PIL with the physical meaning of internal state non-observable variables and include,
explicitly, the physical laws between them and the directly observable external stimuli and the boundary
conditions by constraints in the NN, thus helping the NN to “know” that the system should fulfill such
conservation laws. The unknown constitutive model is then obtained as an implicit relation between
such internal state variables and the input ones.

(d) Predictive and explanatory problems to identify fixed internal parameters. We add to the previous
problem additional information on the structure of the constitutive model via new constraints between
PILs, adding (or not) information on the values or ranges of the constitutive parameters. It is therefore
possible to ask the NN to predict the particular values of the parameters for a certain predefined
explicit constitutive model structure. The model has to be postulated (partially or totally) a priori and
the searched parameters are obtained as output, reaching some explanatory capacity. This approach
has already been explored by some authors without the use of PILs, which limits it to using only
measurable variables [16]. As a particular case, the model may be perfectly defined, so the network
has no explanatory capacity and the methodology presented may be seen as a pure dimensionality
reduction technique or an offline calculator (response surface).

(e) Model selection. The idea is to test a set of potential constitutive models as in the previous case,
getting the optimal parameters for each of them and then identifying the most likely as such with the
lowest loss function. The one finally selected will be that showing the best performance in terms of
the error function. As commented, a specific case is when H is totally specified, that is, λ are not
learned from the data.

These two latter examples are similar to classical model regression, but using NN software, hardware and
methods, with their advantages in terms of computational cost and distributed computation.
7
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Fig. 3. Scheme of the illustrative example. Hydraulic head loss along a piecewise cross-section pipe.

2. Characterization problems: The goal here is to characterize the parameters of a pre-established constitutive
model or state equation for different macroscopic materials. The material constitutive model or parameters
are assumed to vary from one training data to another. Therefore, for the problem to make sense, enough
physical information about the material response must be provided. The inputs are, consequently, the stimulus
and the response of the material, x = (u, f ). The output is composed of variables related to the state model.
Two classes of descriptors may be provided as output variables.

• Structural descriptors: Any functional descriptor of the model characteristics (e.g. spatial homogeneity
or time invariance, anisotropy or symmetries, linearity, memoryless, damage accumulation, etc.).

• Prescribed model parameters: parameters appearing in the mathematical expression of a given
empirical equation. For instance, the Young modulus E and the Poisson ratio ν.

In this second family, we can distinguish the same types of problems as in the predictive one, with analog treatment
of the different involved variables. The difference is that the particular state model, defined by an appropriate subset
of the complete NN or by a set of parameters associated with an a priori defined parametric model, is part of the

utput variables.
These types of problems may be combined in mixed ones. For example, we can include a PIL associated to

radients of the essential variable (e.g. strains in Mechanics) with the corresponding defining constraint with the
nput/output layer (displacements) and another one associated to internal hidden variables (stresses) constrained by
he conservation law (conservation of linear momentum). These two layers are connected by a subset of the whole
N that identifies the state model defined between both (stress–strain constitutive model).

. Examples of application

Next, we consider several examples to illustrate the methodology and the different types of applications. We
resent the two approaches described: prediction and characterization. The fundamental results are shown, while
ifferent aspects about the method performance will be addressed in the Discussion section.

.1. Problem statement

Let us consider a pipe segment of length δ1, with a circular cross-section of diameter D1, and a sudden change
n its circular cross-section to another segment of length δ2, with the same shape but with a bigger diameter
D2 (Fig. 3). The initial objective is to compute the head pressure loss, ∆p, along the length of the whole pipe
n the steady-state regime, assuming fluid incompressibility. Using the Bernoulli equation, along a streamline, the
ydraulic head is defined as h =

v2

2g +z+
p
γ

, with γ = ρg, being ρ the density of the fluid, g the gravity acceleration,
z the elevation, so that ∆h is the hydraulic head loss due to eddy dissipation and wall friction that corresponds to
he state equation of the problem, so it has to be characterized by means of: (i) additional assumptions, usually with
oor accuracy; (ii) experimental tests with the corresponding fitted phenomenological equations; (iii) simulations
ith complex fluid flow models. Here, we shall assume that the hydraulic head loss is associated with two physical
henomena: (i) viscous dissipation distributed along the pipe and (ii) localized dissipation at the pipe expansion.
8
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J. Ayensa-Jiménez, M.H. Doweidar, J.A. Sanz-Herrera et al. Computer Methods in Applied Mechanics and Engineering xxx (xxxx) xxx

1
2

3

4
5

e 6

7

8
9

10
11

12

w 13
p 14

15
i 16

17

18
19

20

w 21
a 22

23
d 24

25
For the first physical phenomenon, we have distributed losses along a streamline, so assuming the flow as
unidimensional and considering a horizontal pipe, we can write:

d
dx

(
v2

2g
+

p
γ

)
=

dh
dx

= −i, (5)

with i the hydraulic head slope.
It is common to express the hydraulic head slope in terms of the fluid velocity by using the Darcy–Weisbach

xpression [46]:

i = fD
1

2g
v2

Φ
, (6)

where Φ is the hydraulic diameter of the pipe and fD the Darcy friction factor, an empirical coefficient that, again,
is determined by additional hypotheses or semi-empirical expressions. Here, for illustrative purposes, we adopt a
common empirical model: the Hazen–Williams expression for the hydraulic head slope that considers the fluid
viscosity and the pipe roughness simultaneously [47]:

i = λ
(q
κ

)α

Φβ, (7)

ith q = Σv the flow rate (Σ is the cross-section area), λ = 10.67, α = 1.8520, β = −4.8704, κ the roughness
arameter of the pipe wall and Φ its hydraulic diameter.

If the pipe has the same properties along a certain distance δ, the previous expression can be immediately
ntegrated, getting:

∆h =
dh
dx

δ = −iδ = −λ
(q
κ

)α

Φβδ. (8)

If we now move to the second term of the energy loss, due to the sudden pipe expansion, a typical approach is
the so-called Borda–Carnot equation [48]:

∆h = ξ
1

2g

(
1 −

Σ1

Σ2

)2

v2
1, (9)

here Σ1 and v1 are the cross-section area and flow velocity before the expansion and Σ2 the cross-section area
fter expansion. ξ is, again, an empirical coefficient accounting for the magnitude of the viscous eddy dissipation.

Assuming an almost uniform flow velocity profile, which is the case for fully developed flows, it is possible to
erive from the mass and momentum conservation equation that ξ ≃ 1 [48].

Combining these two hydraulic head loss phenomena, we finally write:

(∆h)1 = λ

(
q
κ1

)α

Φ
β

1 δ1, (10a)

(∆h)e = ξ
1

2g

(
1 −

Σ1

Σ2

)2

v2
1, (10b)

(∆h)2 = λ

(
q
κ2

)α

Φ
β

2 δ2, (10c)

In terms of the pressure drop:

(∆p)1 = λγ

(
q
κ1

)α

Φ
β

1 δ1, (11a)

(∆p)e =
1
2
ρq2

[(
1
Σ 2

2
−

1
Σ 2

1

)
+ ξ

(
1
Σ1

−
1
Σ2

)2
]

, (11b)

(∆p)2 = λγ

(
q
κ2

)α

Φ
β

2 δ2. (11c)

Eq. (11) describes the whole physics of the model when Hazen–Williams and Borda–Carnot loss models are
assumed. Besides the empirical equation relating the energy losses with the velocity, there is another underlying
 26
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universal physics inherent to the problem, although part of it has been already used even if it has been masked:
the momentum conservation equation has been used in the derivation of the Bernoulli equation while the energy
conservation has been applied to get Eq (8). Another universal equation is mass conservation (constant flow
equation), which was used only in Eq. (11b) but will be used again later.

Let us now use the two different approaches, prediction or characterization, to solve this simple problem.

• Prediction problem:
The aim here is to predict a pressure drop ∆p from a given flow q through the pipe. This problem is
illustrative in the sense that we know a conserved quantity of the problem (the mass) and we want to know
the functional dependence between another physical variable (pressure drop) and this conserved quantity
(equivalent to velocity). Taking into account that for circular-based cylindrical pipes Φi =

√
4Σi
π

, and renaming
the parameters, we can write Eq. (11) as:

∆p = λ1q2
+ λ2qλ3 , (12)

where:

λ1 =
1
2
ρ

[(
1
Σ 2

2
−

1
Σ 2

1

)
+ ξ

(
1
Σ1

−
1
Σ2

)2
]

, (13a)

λ2 =
2λγ
√

π

2∑
i=1

Σ
β/2
i

κα
i

δi , (13b)

λ3 = α. (13c)

This model may be seen as a physically-based mathematical relation, relating one input, x = q to an output,
y = ∆p variable, by a function y = Y (x; λ), that includes three formal parameters, λ1, λ2 and λ3, easily
obtained from:

– The cross-section areas of the pipe: Σi , i = 1, 2.
– The roughness of the pipe wall: κi , i = 1, 2.
– The lengths of different sections of the pipe: δi , i = 1, 2.
– Some physical parameters: density ρ and gravitational acceleration g.
– The model parameters: the exponents α = 1.8520 and β = −4.8704 and the coefficient λ = 10.67. The

values are taken in I.S. units.

Note that this model is highly nonlinear and, despite its conceptual simplicity, it is not that easy to solve using
data-based approaches.
Depending on the selected approach:

1. We try to learn the relationship ∆p = Y(q).
2. We learn ∆p from the velocities, ∆p = Y (v0, v1, v2), where vi =

q
Σi

. This is a simple but illustrative
example of defining a new state variable from the input variable q.

3. We learn ∆p from the flow q but by means of local pressure gradients, ∆p = Y (w1, w2) = δ1w1 +

(∆p)e + δ2w2, where wi =
dp
dx

⏐⏐⏐
i

is the local pressure drop gradient along with the segment i , δi is the
length of this segment, and (∆p)e is the pressure drop due to the expansion. This equation corresponds
to momentum conservation. Besides, we have to postulate the relation (w1, w2, (∆p)e) = H(q).

4. The combination of the two previous ones. We try to learn ∆p from flow q but by means of
local pressure gradients as before. Besides, we postulate (w1, (∆p)e, w2, ) = H(v0, v1, v2) and
(w1, (∆p)e, , w2) = H(v0, v1, v2) where we have defined a new set of internal variables, vi , that must
satisfy mass conservation equation, viΣi = q .

5. We try to learn ∆p from the flow q as in the previous example. The only difference is that, now, we
define (w1, (∆p)e, w2) = H(v0, v1, v2) with:

H1(v0, v1, v2) = λγ

(
v0Σ1

)α

Φ
β

1 , (14a)

κ1

10
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H2(v0, v1, v2) =
1
2
ρ

[
(v2

2 − v2
1) + ξ (v2 − v1)2] , (14b)

H3(v0, v1, v2) = λγ

(
v2Σ2

κ2

)α

Φ
β

2 . (14c)

Now, we can establish as unknown parameters λ1 = ξ , λ2 =
λΦ

β
1

κα
1

and λ3 =
λΦ

β
2

κα
2

. We have therefore
H = H(v0, v1, v2; λ). This is quite common, as it means that we do not know the roughness of each
pipe segment (equivalently, the value of 1/κα

i ), but we do know the model and the geometry. The rest
of the parameters λ, Φβ

i act as fixed multiplicative constants.
6. The same problem as before, except for the fact that, now, we have several possible models and we

want to select the best. For example, using the Darcy–Weisbach model instead of Hazen–Williams’ for
the distributed losses, the H model writes:

H1(v0, v1, v2) =
1
2
ρ fD1

v2
1

Φ1
, (15a)

H2(v0, v1, v2) =
1
2
ρ

[
(v2

2 − v2
1) + ξ (v2 − v1)2] , (15b)

H3(v0, v1, v2) =
1
2
ρ fD2

v2
2

Φ2
. (15c)

For that case, the unknown parameters are λ1 = ξ , λ2 = fD1 and λ3 = fD2 . As fDi depend on the flow
regime, assuming, for example, laminar regime, we have fDi = 64ν/(viΦi ).

• Characterization problem:
Now the aim is to characterize some of the parameters of the pipe segments for a given set of values
(q, p0, p1, p2). That is, the parameters of the constitutive equation vary from one sample to another, and
the final goal is to predict those parameters defining the intrinsic behavior of the system, assuming a given
state model structure. Let us suppose, for instance, that we want to characterize the roughness of the pipe in
terms of the two parameters κ1 and κ2. For the sake of simplicity, let us fix a constant area Σ1 = Σ2 = 1 m2,
equivalent to assume ξ = 0 and ρ = 0 at Eqs. (14) and (15). Note that this example is very illustrative in the
sense that it characterizes a spatially variable property of a given material. This may be extrapolated to obtain
the profile of a material parameter κ = κ(x) for heterogeneous materials, when monitoring its behavior under
certain actions.
As we are in the heterogeneous case, for discovering the roughness parameters, it is necessary to measure the
pressure drop at the two segments, otherwise, the problem would be undetermined. For the present problem,
the relation to be learned is (q, p0, p1, p2) → (κ1, κ2). For the Hazen–Williams model, the parameters κ1 and
κ2 are related to the above variables by:

κi =

(
γ λΦ

β

i δi

)1/α

q (pi−1 − pi )
−1/α , (16)

that is κi = λ1,i q (pi−1 − pi )
λ2 where λ1,i =

(
γ λΦ

β

i δi

)1/α

and λ2 = −
1
α

. Note that the parameter dependence
is κ1 = Y (p0, p1) and κ2 = Y (p2, p1). This is not the general case, but could be exploited in the design of the
state equation model κ = H(p0, p1, p2), as pointed out in Section 2.3. However, this discussion is important
and will be further elaborated in upcoming papers. Here, conventional multilayer perceptrons H will be used
to model the state equation H .
Depending on the selected approach, we would like:

1. To learn the relationship (κ1, κ2) = Y(q, p0, p1, p2).
2. To learn the variables κ1 and κ2 from the velocities and pressures, (κ1, κ2) = Y(v1, v2, p0, p1, p2), with

velocities satisfying the conservation equation, q = Σivi .
3. To learn κ1 and κ2 from the pressures and flow velocities, (κ1, κ2) = Y(v1, v2, w1, w2) where

(w1, w2) = H(p0, p1, p2), with w1, w2 the head pressure drops (related to viscous forces) and
R(w1, w2, p0, p1, p2) = (δ1w1 − (p1 − p0), δ2w2 − (p2 − p1)) comes from the momentum conservation.
11
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Fig. 4. Comparison of unconstrained and constrained neural networks. The constrained neural network (Physically-Guided Neural
Network) is illustrated by its physically augmented network, where constraints have been replaced by extra outputs.

3.2. Results of the prediction approach

3.2.1. Direct input–output prediction. Comparison between the classical unconstrained and the constrained
neural networks

Let us first consider the problem of predicting directly the nonlinear relationship q → ∆p without any additional
onstraint, which is a standard NN approach. A neural network is established to solve the single input–single output
→ ∆p problem proposed. We choose a neural network with only three hidden layers of n1 = 3, n2 = 15 and

3 = 15 neurons, respectively. The network is illustrated in Fig. 4(a)
The neural layers are mathematically defined as follows. Given x = y0 = q , y = y4 = ∆p and

y1 = xW 1 + b1, y2 = y1W 2 + b2,

y3 = ReLU( y2W 3 + b3),

y4 = y3W 4 + b4, (17)

ith ReLU a Rectified Linear Unit activation function.
Now we define an analogous neural network in which we impose mass conservation, that is, constant flow in

he three reference points of the pipe:

v Σ = q, i = 1, 2. (18)
i i

12
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Table 1
Physical parameters for the problem with fixed geometry.

Parameter Σ1 Σ1 ρ ξ g κ1 κ2 δ1 δ2

Value 1.0 m2 2.0 m2 1.0 kg/m3 1.0 9.81 m/s2 140 140 10 m 10 m

Fig. 5. Root Mean Squared Function and penalty function. Note that, as the topology and parameters of the network between the v and
∆p layers are the same, the asymptotic trend of both RMSE functions is the same. Only a modification in the network topology associated
with the model, that is, in H , would improve the accuracy of the method. The main difference between the networks is the evolution of
the value of the penalty function: while for the unconstrained network no penalty term associated to the fundamental physics is added to
the loss function, for the constrained network, the penalty term in the loss term (OF) ensures the fulfillment of the constraint, providing
physical meaning to the neurons of some internal layers.

The imposition of Eqs. (18) gives the hidden variables y1 a clear physical interpretation: the flow velocities vi .
Eq. (18) is imposed in the neural network via constraints between the values of the corresponding neurons by a
penalty approach. Fig. 4(b) illustrates the interpretation of this physically guided network. The network topology
is identical to the one of the unconstrained network, but the objective function includes now additional terms,
accounting for the constraints associated with the physics.

For the training process, the data input was randomly generated with a uniform distribution, using the state model
presented in Eq. (12) for q ∈ [1.0; 5.0] (m3/s). The physical parameters used for the data generation are shown in
Table 1.

As a learning algorithm, a gradient descent optimizer was selected with learning rate parameter β = 0.001. At
ach training step, n = 4 data points were selected, enough for our purpose. For the constrained network, we chose
penalty parameter p = 0.01 Pa2 s2/m6. Ntest = 1000 samples were randomly generated for the testing procedure.
Fig. 5 shows the value of the Root Mean Square Error (RMSE) and the Penalty (PEN) functions along with

he training iterations. The effect of including the penalty term (related to the physics of the problem) is clearly
llustrated in Fig. 5 that shows that the RMSE has a faster decay in the early learning steps. Indeed, the error
onverges to the same value when the number of iterations increases. Although there is not a general recipe for the
odel improvement and each benchmark problem requires its own strategy, as discussed in the broad bibliography

n neural networks [49], the fundamental conclusion here is that the constrained network does not necessarily
mprove the accuracy of the model if they both have the same network topology and metaparameters, but the
ntroduction of physical constraints does speed-up the network convergence. This speed-up is also explained by
he evolution of the penalty term value PEN (Fig. 5(b)) for both neural networks: for the unconstrained one, this
erm is not included in the penalty function and therefore it is not necessarily decreasing. Of course, since the
nconstrained network does not force its fulfillment and the error MSE goes also to zero, it is clear that with this
etwork topology, there is not a global minimum solution but many local minima. However, the convergence to one
f these minimal solutions is accelerated in the constrained case and for, let us say, N = 600 iterations, the behavior
f the unconstrained network is suboptimal. Unless the whole underlying parametric model is assumed as known,
H = H (·, λ), what would place us in a case analog to classical parametric fitting via optimization procedures, 26
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Fig. 6. Comparison of the network output with the analytical model. Both models present a similar error. The effect of the constraints
is not to improve the accuracy, but to speed-up the convergence, besides the physical interpretation of some of the internal layers.

there is no simple way of defining a reduced enough network to guarantee both the required abstraction capability
(generalization) and global minimal requirements (specificity), reducing the computational cost.

Fig. 6 shows the accuracy of constrained and unconstrained neural networks after N = 1000, 3000, 10000
iterations (marked with a dashed bar in Fig. 5)) when compared to the analytical solution. As explained before, the
performance of both networks, if we assume convergence, is similar and only the learning rate, not the accuracy,
is improved by the constrained network. The error included in Fig. 6 was computed as:

EL2 =

(∫ 10

0
(Y (q) − Ym(q))2 dq

)1/2

, (19)

where Y (q) is the network predicted pressure drop and Ym(q) = λ1q2
+ λ2qλ3 the analytical solution.

The problem may be enriched by taking into account some geometrical aspects. For example, we can consider
he two pipe lengths, l1 and l2 (until now, they were denoted as δ1 and δ2 because they were constant parameters)
s extra input variables. This adds a double benefit: (i) it allows us to consider variable geometries and (ii), if some
roblem parameters are known, the neural network may be simply adapted and simplified to include more physical
nowledge. Indeed, for ξ = 0, we know that all pressure drop is associated with the distributed head loss along the
wo stretches so that the hidden layer may be replaced by a layer with two neurons, whose relationship with the
utput neuron will be ∆p = l1 y3,1 + l2 y3,2. With these considerations, the third hidden layer acquires also physical

meaning (the local pressure drop per unit length at stretches 1 and 2). It is important to note that the constraint
in the first hidden layer is now crucial because the input variables have different dimension and the normalization
and the ReLU activation function acting between the first and second layer are complemented by the constraint
indicating that the lengths l and l do not influence the flow velocity.
1 2

14
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Fig. 7. Physically augmented neural network for the geometry-dependent problem. The red lines illustrate the velocity definition in
terms of flow, while the blue lines represent the geometry inclusion by means of the momentum conservation equation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Statistics of the absolute relative error |εr | for the two networks.

Network Minimum Q1 Q2 Q3 Maximum (Mean ± Std. error)

Unconstrained 2.0 × 10−6 2.3 × 10−1 5.0 × 10−1 8.2 × 10−1 2.8 × 102 (8.28 ± 0.03) × 10−1

Constrained 4.9 × 10−8 1.2 × 10−2 2.1 × 10−2 4.8 × 10−2 5.8 × 10−1 (4.433 ± 0.009) × 10−2

Neural layers are mathematically defined as follows. Given x = (q, l1, l2):

y1 = ReLU(xW 1 + b1), y2 = ReLU( y1W 2 + b2),

y3 = ReLU( y2W 3 + b3), y4 = y3,1l1 + y3,2l2 = ∆p. (20)

The constrained network includes the same constraint as before, relating flow and velocities. The physically
uided representation of this new constrained neural network is illustrated in Fig. 7.

All physical and geometrical parameters are the same as in the preceding example, except that ξ = 0,
1 = Σ2 = 1 m2, since the effect of the pipe expansion is not the relevant phenomenon here, κ1 = 140 and

κ2 = 100. l1 and l2 were uniformly generated between 0 and 10. As before, a gradient descent optimizer was
selected with learning rate parameter β = 0.003. At each training step, n = 100 data points were selected. The
same value for the penalty parameter (p = 0.01 Pa2 s2/m6) was selected and Ntest = 10000 samples were randomly
generated for the testing procedure.

As in the previous case, Fig. 8 shows the convergence curves for the RMSE and PEN functions demonstrating
ood convergence and no overfitting. Fig. 9 shows the accuracy of the constrained and unconstrained neural networks
fter N = 20000 iterations. In that case, in addition to the speed-up of the convergence, the PGNNIV shows a better
ccuracy, as expected, because the topology of the network was thought in a physical sense, with the last hidden
ayer having a physical interpretation (the internal variable wi , i = 1, 2).

For comparison purposes, Table 2 shows the statistics of the absolute value of the relative error, |εr |, with
r =

(∆p)predicted−(∆p)true
(∆p)true

obtained for both the unconstrained and constrained networks, when 100 × 100 × 100
values of q, l1 and l2 were sampled in [1; 5] × [0; 10] × [0; 10], respectively. It is clear that the effect of the
constraints is to reduce the relative error together with its variability.

3.2.2. Prediction of the internal variables and identification of the state model
Now, and besides the constraints associated with physical principles, we evaluate the effect of adding model

constraints to the network. We shall also discuss the explanatory capacity of the presented method in learning the
internal physical variables and, if it is the case, the model parameters. As previously explained, there are two types
of equations used in the formulation of the hydraulic head loss in a pipe:
15



CMA: 113816
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Fig. 8. Root Mean Squared Function and penalty function for the network including geometry. The physical constraints give the hidden
layers the correct physical interpretation, since the integration constraint, ∆p = w1l1 + w2l2 is correctly formulated. This is achieved thanks
o the effect of the penalty term, which gives the PILs layers their correct interpretation. As in Fig. 5, the difference between the constrained
nd the unconstrained networks is the fulfillment of the constraints after training.

Fig. 9. Exact and predicted solution for different lengths of the segments. The specified network topology and the introduction of the
physical constraints are responsible for the network convergence. Results are given for different segment lengths.

• Fundamental principles: Mass (Σ1v1 = Σ2v2), linear momentum (∆p = w1δ1 + (∆p)e +w2δ2) conservation,
and energy (hydraulic head) balance (∆h = (∆h)1 +(∆h)e +(∆h)2) (the subscripts indicate the corresponding
segment of the pipe).

• Constitutive equation: These equations relate the hydraulic head loss (which is directly related to pressure
drop by means of Bernoulli equation) to the fluid velocity along the streamline. For example, the Hazen–
Williams or Darcy–Weisbach’s for the losses associated with the pipe roughness and Borda–Carnot’s for the
eddy energy dissipation due to the pipe expansion.

It is clear that there is no general need of including constraints related to the constitutive equation, following
he approach of the two previous examples. This is, indeed, contraindicated if there is no knowledge about the
nderlying behavior of the fluid (physical nature, regime, etc.). However, it might be interesting in at least two
ircumstances:

1. Model selection: We want to select among many candidate models able to capture, from a macroscopic point
of view, the fluid behavior. For instance, in the present example, we shall choose between the Darcy–Weisbach
and the Hazen–Williams models for the hydraulic losses. Indirectly, this may give us information about the
fluid regime, since the relationship between the Darcy factor fD and the fluid velocity is fixed ( fD =

64ν
vΦ

for
instance for laminar regime).
16
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2. Structure physical discovering: Usually, the model parameters are related to some physical properties that
give us insight into the nature, structure, or geometry of the problem. In the present example, for the Hazen–
Williams model, κ1 and κ2 are related to the roughness of the pipe segments and in the Borda–Carnot model,
ξ is related to the smoothness of the expansion.

As the aim is to predict the state model, it is clear that now the output for each data point must be a triplet
of values ((∆p)1, (∆p)e, (∆p)2) corresponding to the pressure drop at segment 1, expansion and segment 2,
espectively. Without this multiple-output consideration, it should be impossible to distinguish between effects in
he whole pressure drop. In what follows, three neural networks (with and without constraints) are compared:

1. Model-free approach: Physically-Guided Neural Network where the physics (fundamental laws) are imposed
via appropriate constraints in certain layers. This occurs when we add the constraints by means of functions
vi = Ei (q) =

q
Σi

, i = 1, 2.
2. Model-based approach: Physically-Guided Neural Network where both, physical and empirical (constitu-

tive/state equations) laws are imposed.

(a) Hazen–Williams model: This corresponds to the constraints:

(∆p)1 = λ

(
v1Σ1

κ1

)α

Φ
β

1 δ1, (21a)

(∆p)2 = λ

(
v2Σ2

κ2

)α

Φ
β

2 δ2, (21b)

(∆p)e =
1
2
ρq2

[(
1
Σ 2

2
−

1
Σ 2

2

)
+ ξ

(
1
Σ1

−
1
Σ2

)2
]

. (21c)

(b) Darcy–Weisbach model: This corresponds to the constraints:

(∆p)1 =
ρ

2
fD1

v2
1

Φ1
, (22a)

(∆p)2 =
ρ

2
fD2

v2
2

Φ2
, (22b)

(∆p)e =
1
2
ρq2

[(
1
Σ 2

2
−

1
Σ 2

2

)
+ ξ

(
1
Σ1

−
1
Σ2

)2
]

. (22c)

Note that in that case, for the laminar regime, fDi =
64ν
viΦi

and fDi are constant, while they depend on
the pipe roughness in the rough turbulent regime.

In the model-free network, the network topology is prescribed as:

y1 = y0W 1 + b1, y2 = ReLU( y1W 2 + b2),

y3 = ReLU( y2W 3 + b3), y4 = y3W 4 + b4, (23)

ith y0 = x = q and y4 = y = ((∆p)1, (∆p)e, (∆p)2). As before, a PIL is prescribed for the variables y1, that
ill be identified with v1 and v2 while the mass conservation is imposed via the constraint vi −

q
Σi

= 0. Layers 2
and 3 are composed of n1 = n2 = 15 neurons.

Similarly, in the model-based network, we propose the following topology:

y1 = y0W 1 + b1, y2 = H( y1; λ), (24)

where H is the model equation, formulated in terms of the model parameters λ, which are defined as λ1 = ξ ,
λ2 = Φ

β

1 /κ1 and λ3 = Φ
β

2 /κ2 for the Hazen–Williams model and λ1 = ξ , λ2 = ν/Φ1 and λ3 = ν/Φ2 for the
Darcy–Weisbach model (in the laminar regime).

Both neural networks are illustrated in Fig. 10.
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Fig. 10. Model-free and model-based PGNNIV. The universal constraints are illustrated using the red dashed boxes. Model-based constraints
are illustrated using blue lines. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

For the training process, the data input was randomly generated with a uniform distribution using the state model
presented in Eq. (12) for q ∈ [1.0; 5.0] (m3/s). The physical parameters used for the data generation are shown in
Table 1. As a learning algorithm, a gradient descent optimizer was selected with learning rate parameter β = 0.0001.
At each training step, n = 4 data points are selected. For the constrained network, we chose a penalty parameter
of p = 0.01 Pa2 s2/m6. Ntest = 1000 samples were randomly generated for the testing procedure.

To evaluate the performance of all neural networks, we illustrate in Table 3 the statistics of the relative error
f the predicted value (when compared to the analytical one) for the different variables involved in the problem:
i) Measurable variables (output variables), that is, the pressure drops (∆p)1, (∆p)e and (∆p)2; (ii) Non-measurable
ariables (internal variables), that is, the flow velocity at each segment, v1 and v2.

Figs. 11 and 12 illustrate the predictive capacity of the different networks in estimating the internal and
easurable variables respectively for different values of q. Once the model-based network has converged, it is

ossible to extract the model parameters, whose relative error is illustrated in Table 4 and in Fig. 13.
The conclusion drawn is clear and natural. If we want a predictive capability, a model-free neural network

s always preferred except if the underlying constitutive model is perfectly known (what is, in general, a strong
ssumption). A wrong model assumption worsens the network accuracy with respect to a model-free one. Therefore,
odel-based networks can help in model identification and can shed light on the system’s physical and geometrical

tructure. The specification of an incorrect underlying model affects both correctly specified variables ((∆p)e) and
hose that are not ((∆p) , i = 1, 2) as the error is distributed in all the predicted variables.
i
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Fig. 11. Predictive capacity of each neural network in estimating the internal variables. The constrained network is the only one able
to predict accurately the internal variables. Model specification improves the accuracy only when the model assumed is the correct one.

Table 3
Statistics of the relative error εr for the different networks analyzed. Data is presented as mean value (± Std. error). MF: Model-Free.
MB (HW): Hazen–Williams model-based. MB (DW): Darcy–Weisbach model-based. Errors below 1/1000 are not reported.

Measurable variables Internal variables

(∆p)1 (∆p)e (∆p)2 v1 v2

MF Unc. −0.031 (±0.002) 0.030 (±0.002) −0.070 (±0.002) 1.405 (±0.001) 0.211 (±0.007)
Con. −0.049 (±0.003) 0.023 (±0.002) −0.03 (±0.02) 0.059 (±0.002) 0.096 (±0.003)

MB (HW) Unc. −1.000 (±0.000) 0.008 (±0.000) −1.000 (±0.000) 1.723 (±0.000) 1.666 (±0.004)
Con. 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000) 0.000 (±0.000)

MB (DW) Unc. −1.000 (±0.000) 0.003 (±0.000) −0.56 (±0.02) 1.764 (±0.000) 0.120 (±0.001)
Con.. −0.37 (±0.01) 0.021 (±0.001) −0.165 (±0.004) 0.097 (±0.002) 0.165 (±0.006)

Table 4
Relative error εr of the model parameters for the different
model-based networks. MB (HW): Hazen–Williams Model-Based.
MB (DW): Darcy–Weisbach Model-Based. Relative error below 10−2

(MB (HW) constrained) is marked as 0 in the table because it is of
the order 10−6.

Parameter

λ1 λ2 λ3

MB (HW) Unc. 1.68 1.00 0.99
Con. 0.00 0.00 0.00

MB (DW) Unc. 1.75 1.00 0.58
Con. 0.42 0.27 0.65

3.3. Results of the characterization approach

Recall that the aim is now to characterize some of the parameters of the pipe segments for a given set of values
q, p0, p1, p2), that is, the relationship to be learned now is (q, p0, p1, p2) → (κ1, κ2).

As Eq. (16) is complex and highly nonlinear, it is expected that the number of hidden layers required will be
arge. Thus, we refer to this part of the network as a Deep Learning Box with its own internal number of layers,
eurons and connectivity.

For the problem presented, the PGNNIV topology is shown in Fig. 14. The Deep Learning Box is a multilayer
erceptron with 5 dense layers of 20, 40, 80, 40 and 20 neurons respectively, with activation functions of ReLU
ype. The network performance is compared to the same network in which the physical constraint has not been
 9
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Fig. 12. Predictive capacity of each neural network in estimating the measurable variables. The unconstrained and constrained networks
have a similar capacity in estimating the measurable variables. Model specification improves the accuracy only when the model assumed is
the correct one.

Fig. 13. Explanatory capacity of each model-based network. As the data-set was generated using the Hazen–Williams model, only this NN
has a perfect explanatory capacity (relative error of the order 10−6) while the Darcy–Weisbach-based network has only partial explanatory
apacity.

ncluded. The difference between the constrained and the unconstrained networks is that the penalty parameter is
et to zero for the unconstrained network.
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Fig. 14. PGNNIV for the characterization problem. Red dashed rectangles represent physical constraints on neurons. The relationship
between flow and velocities is imposed in v1 and v2, vi =

q
Σi

and the definition of the incremental pressure drop is imposed in (∆p)1 and
∆p)2, (∆p)i = pi − pi−1.

The training data-set was created using the analytical model, with κ1 and κ2 randomly generated between κ = 80
nd κ = 140 (that are standard values of the roughness parameter) and a flow q varying from 1 m3/s to 5 m3/s. For
he training process, we used batches of n = 300, a penalty parameter of p = 0.001 and a learning rate parameter
f β = 1 × 10−5 for the gradient descent optimizer. The input xi and output yi values are normalized between their
aximal and minimal value as:

x̂i =
xi − xmin

xmax − xmin
, ŷi =

yi − ymin

ymax − ymin
, (25)

here xmax and xmin are the maximal and minimal values for the input and ymax and ymin the maximal and minimal
alues for the output, respectively. Ntest = 100 test values are used to evaluate the performance.

As for the prediction problem, Fig. 15 shows the performance of both neural networks for the characterization
ne. As in the previous case, the constraints accelerate the convergence of the network.

The accuracy is shown in Fig. 16 where the predicted values of κ1 and κ2 are compared with the theoretical
nes for Ntest = 100 test values. The figure shows a good performance of the neural network although it decays
lose to the boundaries, what is natural, since the neural network has been trained with data (roughness coefficient)
∈ [80; 140].

. Discussion

.1. Performance improvement

The first important property of the presented methodology, beyond its explanatory capacity, is the improvement of
he performance with respect to other Neural-Network-based methods. As PGNNIV has internal constraints between
ayers (or, equivalently, a higher number of outputs) it is obvious that the search space for the optimal solution will
e smaller. This observation leads to four important consequences that are quantified next.

.1.1. Convergence speed-up
Fig. 17 shows the effect of the constraints in the network convergence for four of the presented problems:

i) fundamental prediction problem (Fig. 17(a)), (ii) problem with the geometry inclusion (Fig. 17(b)), ((iii) model
nclusion (Fig. 17(c)) and (iv) characterization problem (Fig. 17(d)). They show the training process for both NNs
constrained and unconstrained) in terms of the Root Mean Squared Error (RMSE).
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Fig. 15. Root Mean Squared Function and penalty function. Even if, in all cases, the Deep Learning Box has not enough power to
capture the complex nonlinear model perfectly (observe that RMSE does not converge to 0) the effect of the penalty is to speed-up the
network convergence.

Fig. 16. Results predicted by the PGNNIV. Both predicted values κ1 and κ2 are compared to the theoretical ones. Line y = x identifies
perfect estimation. The size of the dot is proportional to the value of the input flow: the model tends to give worse results for smaller

ows.

.1.2. Data need decrease
Another way of seeing the speed-up capability of PGNNIV is to focus on data need. In many engineering

roblems, especially in those related to material sciences (solid and fluid mechanics, electromagnetism, optics, etc.),
here is a lack of experimental data due to technical or economic reasons (Small Data framework), so, reducing
he amount of training data required in the process is essential. The effect of the constraints will be evaluated in
erms of the amount of data required, using the pipe flow prediction problem. For this purpose, the learning curve is
valuated for a varying size of the data-set, M = 2, 10, 50. The number of iterations was set as N = 3000 and the
atch size is fixed to n = M (that is, the whole data-set is evaluated in each training step). The RMSE convergence

curves are depicted in Fig. 18. Another way of analyzing these results is illustrated in Fig. 19, where the prediction
of ∆p = f (q) is shown for different data-set sizes and in different convergence steps.

From Fig. 18, it is possible to make some particular conclusions:

• If both networks have the same final accuracy, given a fixed number of iterations, the physically constrained
network performance is better (lower error) than the unconstrained one.
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Fig. 17. Convergence comparison of constrained and unconstrained neural networks. Convergence curves are smoothed with a moving
average filter (window W = 500) for easier comparison. For all cases, the constrained neural network shows a convergence speed-up since the
search space is smaller. In general, the accuracy is not necessarily improved but the network convergence is accelerated. Adding constraints
(see (c)) always speeds-up the convergence, regardless of wether the accuracy is improved or not.

Fig. 18. Learning performance for the two networks and different data-set sizes. Convergence curves are smoothed with a moving
average filter (window W = 500) for easier comparison. For small data-sets, PGNNIV has an impact not only on the convergence speed-up,
but also on the network accuracy.

• The impact of the data-set size is more gradual in the constrained network. Indeed, the curves associated with
unconstrained networks are more step-like (specially for small data-sets), when compared to the constrained
ones. This is very important in order to detect network convergence stabilization.
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Fig. 19. Comparison of the network output with the real solution for different data-set sizes and at different convergence states.
For a small data-set (M = 2), the network only accelerates convergence. When the data-set size is small but large enough (M = 10), the
constraints have an impact on the network accuracy. For large enough data-sets (M = 100), we recover the big data framework, where the
constraint accelerates convergence.

Fig. 20. Learning performance for the two networks and different noise levels. Convergence curves are smoothed with a moving average
filter (window W = 500) for easier comparison. The noise has a much lower impact in the network convergence, both in speed-up and
ccuracy.

In brief, constrained neural networks accelerate the learning process in such a way that they are able to discover
mportant new features with less data (small data problems), what is extremely important in a practical engineering
ontext.

.1.3. Filtering capacity improvement
Here, the noise filtering capacity of the constrained network is explored. In the prediction pipe flow problem, the

ata-set has been considered noise-free. That is, a data-set (q i ,∆p
i
) was generated directly from Eq. (12). Here,

we compare the performance of both neural networks when working with noisy data, a more realistic situation
in experimental problems and data acquired from sensors. To show the noise impact in the learning process, let
us assume a data-sets with an added Gaussian noise, i.e. x = x̄ + Z with Z ∼ N (0, σ ) for x = q,∆p and
σ = 0.01, 0.10, 1.00 Pa. The RMSE convergence curves are illustrated in Fig. 20. Fig. 21 represents the network
accuracy in the (q,∆p) plane for different convergence stages.

The effect is even stronger if the constraint acts on the output layer. For instance, let us consider the network with
output ((∆p)1, (∆p)e, (∆p)2) and let us add the constraint (∆p)1 + (∆p)e + (∆p)1 = ∆p, where ∆p is another

easured variable (the total pressure drop). In addition to a noise of σ = 0.1 Pa, we consider also the possibility
f adding a systematic bias of −0.2 Pa to all the measured variables. Fig. 22 shows the convergence curves and
ig. 23 the network accuracy in the (q,∆p) plane.
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Fig. 21. Comparison of the network output with the real solution for different noise levels and at different convergence states. The
unconstrained network has a pathological convergence when σ = 1.00 Pa. The constrained network reaches the same solution point for

= 1.00 Pa than the unconstrained one with a noise lower in a factor of 10. Besides, at N = 5000, all constrained networks provide similar
results.

Fig. 22. Effect on the learning performance of white noise and bias. Convergence curves are smoothed with a moving average filter
(window W = 500) for easier comparison. Bias is partially corrected and noise filtered in constrained networks. Some level of noise may
improve the network accuracy, as reported in the literature [50–52].

As main results:

• The performance and learning capacity of both networks decrease with noise. This is in agreement with other
works [53–55].

• The impact of the noise is lower in the network convergence, as the RMSE curves are closer for the PGNNIV
networks.

• The noise has an impact not only in the network convergence rate, but also in the network accuracy, as the
curves associated with constrained networks are strictly under the curves associated with the unconstrained
ones for σ = 0.01 Pa and σ = 1.00 Pa. In other words, the physical constraints are able to partially filter the
noise.

• Other systematic errors as bias may be corrected partially by the addition of the constraints to the network.
That is PGNNIV presents bias partial correction capability.

.1.4. Extrapolation capability
Let us consider the problem with the constitutive model for head loss estimations. We evaluate the network

erformance in predicting values of the pressure drops out of the learning data-set, that is, for q ≥ 5.
Figs. 24 and 25 illustrate the extrapolation capacity of the different networks in estimating the internal and

easurable variables respectively for different values of q ∈ [5; 10] m3/s. Fig. 26 shows the relative errors statistics
mean and standard error bar) of the different variables when extrapolating to the new values of q .
 17
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Fig. 23. Effect of white noise and bias in the network prediction. The effect of adding the constraints in the output layer is a bias
eduction in the pressure drop estimation.

Fig. 24. Extrapolation capacity of each neural network in estimating the internal variables. The constrained network always improves
the estimation of the internal variables. For accurate model specifications, the extrapolation capacity is, obviously, total.

We conclude:

• Even if PGNNIV are designed, among other purposes, for a good estimation of the internal variables, their
physically-based nature enables the estimation of the measurable variables out of the learning data-set, which
increases their generalization character.

• Model-based PGNNIV networks are, in a certain sense, similar to standard parameter fitting algorithms so if
the model is assumed to be known, the converged network has no error in predicting the values following the
model assumptions, even for data out of the training range. If we compare PGNNIV, however, to classical fitting
procedures, the former has the advantage of all specific hardware and software relative to ANN technology,
as explained in Section 2.2.2.
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Fig. 25. Extrapolation capacity of each neural network in estimating the measurable variables. The constrained network improves
slightly the estimation of the measurable variables. Again, for accurate model specifications, the extrapolation capacity is, obviously, total.

Fig. 26. Evaluation of the extrapolation capacity. PGNNIV always improves the extrapolation capacity, when compared to standard NN.
This improvement is significant even for the measurable variables, although the internal variables are of course much better estimated. For
model-based networks, the extrapolation capacity is extremely increased.

4.2. Internal state discovery

Despite the characteristics that make PGNNIV faster, less data-demanding and more robust than common NN,
hese are not the main causes that justify its use in scientific and engineering problems. Indeed, this is due to their
hysical explanatory capacity. This can be exploited in two ways: (i) accurate prediction of non-measurable internal
ariables, such as velocities, fluxes or viscous losses and (ii) discovery of the hidden physics in an internal state
quation such as the Hazen–Williams’.

The network explanatory capability may be further explored in systems characterization. First, under convergence
ssumptions, the PGNNIV may be used for predicting the quantitative relation between the different internal
ariables. But also, the network may provide major features of the structure of the empirical model, for instance,
tructural dependence and separability.
 10
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Fig. 27. Model explanatory capacity. MF-PGNNIV has a better explanatory capacity as it is able to provide good results for data-set
following different models and to discriminate between them. MB-PGNNIV gives perfect fit when the model is truly the expected one, but
gives us worse results if not.

For example, in the prediction problem, we have defined three PGNNIVs: a model-free (MF) PGNNIV, a Hazen–
Williams model-based (MB) PGNNIV and a Darcy–Weisbach MB PGNNIV. The presented methodology allows
to discover the internal state equation, and to select the best model among several ones. In Fig. 27, we illustrate
the relationship ∆p = H (v), exported from the network after reaching convergence, for the three PGNNIVs and
two data-sets, with data derived from Hazen–Williams and Darcy–Weisbach models respectively. It is clear that
MF-PGNNIV provides good results for both models, although the two MB-PGNNIV are better suited for the two
specific cases. MF-PGNNIV has therefore more explanatory capacity, while MB-PGNNIV have more predictive
capacity for the specific cases considered. This is another illustration of the trade-off between explanatory and
predictive capacity.

This network explanatory capability may be further explored in characterization also in these two ways: for
ccurately predicting the (q, p1, p2, p3) → (κ1, κ2) relation and also for learning about the model separability.
ig. 28 shows both the real and predicted values for κ1 and κ2 for q = 3 m3/s and different values of (∆p)1 and

(∆p)2. As explained in Section 3.3 and may be seen again in Fig. 28, the predicted values are close to the real ones,
but a more important fact is that the PGNNIV, thanks to its topology, is able to separate the dependency between
variables, that is κi = Hi ((∆p)i ) for i = 1, 2 instead of the general case κ = H(∆p). Thus, some features of the
model become explainable.

4.3. Link to other methods

In recent years, many Data-Driven methods have been applied to solve problems where some of the physics is
known and other has to be discovered. PGNNIV may be compared to the different classes of methods existing in
the literature.

F. Chinesta and co-workers use Manifold Learning (ML) to establish the internal state equation ε ↔ σ [56,57].
n their approach, first the constitutive relationship is computed using Machine Learning techniques in the space
ε, σ ) (note that σ is a non-measurable variable), represented as a low-dimensional manifold. This manifold is then
sed, instead of the constitutive equation in the problem resolution. Our presented approach is similar in the sense
hat the model network H may be formulated using the ML framework. Indeed, methods such as kernel Principal

Component Analysis (kPCA), Non-Linear Principal Component Analysis (NLPCA), Locally Linear Embedding
(LLE) and t-distributed stochastic neighbor embedding (t-SNE) may be formulated in terms of appropriate weights,
biases, activation functions and associated hyperparameters and network connectivity.

A very recent idea uses the GENERIC algorithm in time-dependent problems for model identification and
evolution prediction [58,59]. This may be seen as a particular PGNNIV, where H is defined using the Poisson
nd Dissipation operators, L and D, together with the discrete version of other differential operators, if necessary.

Constraints on many variables may be established, in order to ensure universal physics (the first and second laws
of thermodynamics), by means of the degeneracy conditions. Combining this approach with the previous one leads

to accurate solutions even while maintaining a reduced computational cost [60].
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Fig. 28. Model explanatory capacity. Values of κ1 and κ2 predicted compared to the real ones for different values of (∆p)1 and (∆p)2
nd q = 3 m3 s.

Two other approaches have been proposed with the same model-free philosophy. Other researchers define the
onstitutive manifold using interpolation instead of regression. The first one is called the What You Prescribe is What
ou Get (WYPiWYG) strategy [61–63] and is based on spline interpolation. The second one is based on nearest-
eighbor interpolation, which is totally model-free [64]. Both strategies have demonstrated good performance
rovided that we have the variables sampled at the space (ε, σ ). However, these two approaches suffer from
xtrapolating capacity if the data-set provided has not a broad enough coverage, which is faced in the PGNNIV
ramework by making flexible the network associated with H .

At last and as mentioned, when H is defined via a parametrization of a classical model, H(·) = H(·, λ),
e recover the classical fitting framework (but using neural network tools and algorithms). If, in addition, λ is

ompletely specified and the number of weights and biases is less than or equal to the number of parameters λ,
GNNIV performs merely as a dimensionality reduction.

In a certain sense, PGNNIV framework may be seen as a generalization of all the former approaches. However,
nly the proposed approach is able to deal with non-measurable variables, albeit performing the data discovering
n the state space, where both measurable and non-measurable variables are present. This is possible thanks to the
etwork constraints R, from which the state space is built while the unknown internal model H is learned.

. Conclusions

We have presented a framework in which we use the technology and methods of Artificial Neural Networks
ANN) for solving physically-based problems. This approach allows us both to predict the evolution of a physical
ystem and to explain its structure in the language of Physics.

Of course, it suffers from the typical pros and cons of neural networks. As pros:

• Once the PGNNIV is trained, it allows us to make predictions in an evaluation cost (that is, in real-time).
No linear operator inversion, tangent-based operators computation, or iterative procedure is necessary when
predicting the state or the evolution of a system.

• The network is trained offline in a very time-consuming process. However, ANN is a mature and hot
field in continuous development, and specific hardware and software tools (parallel, cloud and distributed
 25
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computation, GPUs and TPUs software, mathematical optimization algorithms, among other software and
hardware solutions) are accelerating more and more the training steps.

As main cons, we can mention the following:

• For Deep Neural models, the data used in the training process must be large and varied. This explains why
topics such as the Internet of Things (IoT) and the Big Data paradigm are becoming so important in this
context.

• Defining neural network successful models needs a complex and time-consuming process of network topology
definition and hyperparameter tuning. Although some efforts have been made in the last years for developing
appropriate tools [65–68], this remains a hard task that strongly depends on the researcher’s knowledge,
experience or intuition.

• Even if the ANN converges, it is difficult to expect a prediction to be as accurate as when using fully
prescribed mathematical models. PGNNIV are therefore strongly recommended for problems where qualitative
explanations or major trends are searched, without entering in fine quantitative details.

In addition to these general characteristics of ANN methods, the presented hybrid formulation has shown extra
advantages with respect to other existent methods:

• It allows working only with measurable variables. This is crucial as all the Data-Driven approaches, in one way
or another, make hypotheses and assumptions about the relationships between measurable and non-measurable
(internal) variables.

• The presented method ranges from model-free (pure prediction) to model-based (explanatory) approaches. In
this sense, we talk about model-guided methods.

• As this methodology is physically guided, it allows the explainability of the different phenomena investigated,
so it can be framed within the scope of the eXplainable Artificial Intelligence (XAI) [42,69].

• It allows obtaining the whole field of internal variables, without any post-processing of the output variable.
This is impossible in any other ANN method without additional assumptions.

• As shown in the presented examples, PGNNIV has both predictive and explanatory capacity. Depending on
the aim of the scientist, they can emphasize one capability or the other, depending on their interest, by easily
adding/removing constraints, changing the penalty parameters or modifying the network topology.

• Last, but not least, PGNNIV has shown better performance than ANN in aspects such as convergence speed-up,
data needs, noise filtering, and extrapolation capacity.

PGNN have just emerged in the last years, but many researchers have come to the conviction that it is the
combination of physical knowledge and machine learning tools the appropriate way to adapt the Big Data paradigm
to Simulation-Based Engineering and Sciences, overcoming the growing distrust of physical scientists with artificial
intelligence.
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