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The complete formulation of B.E.M. applied to the analysis of 
axisymmetric bodies acting in the plastic range is presented in this paper. 
The concept of derivative of a singular integral given by Mikhlin has been 
used in order to calculate the stresses in internal points. 

Also a semianalytical approach is proposed to compute the matrix 
coefficients, presenting the way in which it can be done and the results 
obtained. 
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Introduction 

The analysis of bodies of revolution has many practical 
applications in engineering, such as pressure vessels, certain 
pipes, rotating disks, and many different types of con
tainers, including nuclear pressure vessels. Their importance 
justifies applying more efficient and accurate methods of 
analysis, such as boundary elements to them. This paper 
deals with the elastoplastic analysis of bodies of revolution 
subject to axisymmetric loads. 

Several authors have discussed the application of elasto-
plasticity using boundary elements. The more complete 
formulations for three and two dimensional plane stress-
plane strain are found elsewhere,1-4 and the first applica
tion was due to Ricardella.5 Cruse was the first to present 
a formulation for axisymmetric elasticity6 based on the 
fundamental solution as presented by Massonet.7 Other 
authors8 have solved the axisymmetric potential problem 
using boundary elements. In a recent paper9 the axi
symmetric elastoplastic case was analysed but the complete 
formulation was not presented. 

In addition, internal stresses were calculated using an 
approximate formulation based on a simple finite difference 
procedure. By contrast Telles and Brebbia3 have calculated 
the stresses at internal points using the proper integral 
equation. This correct formulation is extended in the 
present paper to deal with axisymmetric bodies. 

The paper starts by formulating the integral equations 
of elastoplasticity and the corresponding stress tensor 

components for axisymmetric cases in the way previously 
presented for three and two dimensions (plane stress-plane 
strain) in reference 1. This paper also applies the technique 
developed by Wrobel and Brebbia8 to integrate the Legendre 
function around the singularity for potential axisymmetric 
problems. 

The analytical expressions required to complete the 
formulation are presented in the Appendix. 

General formulation 

The Navier equation for the elastoplastic case can be 
written as: 

- 2 ( * ' t 7 T S « " ) - 6 l , , n 0 ) 

where iiy- are the components of the displacement rates, G 
and v are the shear modulus and Poisson's ratio of the 
material bj are the body forces rate components and ep indi
cates the plastic strain rates. The comma indicates deriva
tives. 

Using the weighted residual method, the theory of 
distribution or similar techniques one can obtain a 
Somigliana type identity from equation (1), i.e.: 
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where u* and p* indicate the fundamental solution for 
displacements and surface tractions. The cik components 
given by the Kronecker delta 6,y for internal points are all 
zero for external points and they have different values for 
points on the surface. For smooth boundaries for instance 
they are equal to the Kronecker delta divided by 2, i.e. \b{j. 

The stresses are given by: 
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Finding the derivatives of Somigliana's equation (2) for 
internal points we have: 
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where the derivatives due to the singularity have to be 
taken into consideration in the way proposed by Mikhlin.10 

As indicated by Telles and Brebbia1 the above integrals 
can be taken to the limit which for axisymmetric cases will 
give: 
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where f represents the distance between the field and 
singular points. 

Taking this into consideration expression (3) for stresses 
now becomes: 
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Tensors components such as Dkmi and Sfcmi- have the same 
expressions as for elasticity.6 The 2fcm,;- components are 
given by: 
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The axisymmetric elastoplastic boundary problem does 
not imply any additional compilation over the elastic case 
and in both cases the integrals are treated as shown in 
Cruse et al.6 

Discretization 

Let us assume that the boundary is discretized into Af 
constant elements and the domain into M internal cells. 
This produces, as shown in reference 11, the following 
system of equations: 
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where G' and H' are matrices of dimensions 4Mx 2N, Q' is 
AM x AM, H and G are IN x 2N, Q is 27V x AM and the 
others are vectors of dimension 2N, except for the aP 
vector which is AM. 

For elements without the singularity one can use the 
standard Gaussian quadrature formula.12 When the element 
to be integrated presents a singularity these formulae are not 
efficient and a large number of integration points are needed 
to obtain an accurate result. For this case the semianalytical 
integration can be used.8 Another possibility is to develop 
more accurate integration formulae for the axisymmetric 
case, such as the logarithmic presented in reference 12 or 
the special ones of reference 13. 

In the present paper the integrals are calculated analyti
cally near the singularity where the singular functions are 
of Legendre's type and have a simple asymptotic expansion 
over the rest of the element. 



Consider a boundary element as shown in Figure 1 and 
let us assume that the integration will be carried out over a 
length as indicated in the figure. 

Similarly, for domain integrations the two situations 
indicated in Figures 2 and 3 can be present. Figure 2 repre
sents the integration of terms in the matrix Q (i.e. from a 
point on the boundary) and Figure 3 the integration of 
terms in Q' (i.e. for a singularity in the domain). The dark 
area in the figures corresponds to the area where analytical 
integration is used. The analytical integration refers only 
to the variable S (see Figure 4) as the integration with 
respect to 6 can be accurately done numerically. Hence 
for Figure 4 we have: 
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We need to consider how to calculate the /integral for 
each different case. The/functions to be integrated corre
spond to the first and second derivatives of the displace
ments and are the ones that appear in the tensors S,/fc and 
2,/fc/. In what follows we present the particular case of the 
integrals in the Q matrix. The same development applies for 
those integrals in Q'. 

Matrix Q 

For the calculation of the terms in this matrix it is necessary 
to consider terms in the first derivatives of the displace
ments in the £1 domain, see Figure 6. These integrals take 
the following expression: 
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The expression for each of the / integrals is given in the 
Appendix. The integrals presented in (12) can then be used 
to compute the elements of Q. Similarly one can find the 
integrals necessary for Q', see Doblare ,14 
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Conclusions 

Following the work by Telles and Brebbia11 and Cruse et 
al.,6 the complete boundary element formulation for the 
elastoplastic axisymmetric case is given in this paper. To 
this end the different tensor components corresponding to 
elastoplasticity have been calculated together with the 
principal value term for the plastic deformations. The 
boundary and domain integrals needed for the constant 
boundary element case are also given following the semi-
analytical approach used by Telles and Brebbia11 and Wrobel 
and Brebbia.8 
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