69 research outputs found

    The first Japanese biobank of patient‐derived pediatric acute lymphoblastic leukemia xenograft models

    Get PDF
    A lack of practical resources in Japan has limited preclinical discovery and testing of therapies for pediatric relapsed and refractory acute lymphoblastic leukemia (ALL), which has poor outcomes. Here, we established 57 patient-derived xenografts (PDXs) in NOD.Cg-Prkdcscidll2rgtm1Sug/ShiJic (NOG) mice and created a biobank by preserving PDX cells including three extramedullary relapsed ALL PDXs. We demonstrated that our PDX mice and PDX cells mimicked the biological features of relapsed ALL and that PDX models reproduced treatment-mediated clonal selection. Our PDX biobank is a useful scientific resource for capturing drug sensitivity features of pediatric patients with ALL, providing an essential tool for the development of targeted therapies

    Exploratory classification of clinical phenotypes in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis using cluster analysis

    Get PDF
    A novel patient cluster in antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) may be identified in Japan. We performed multiple correspondence and cluster analysis regarding 427 clinically diagnosed AAV patients excluding eosinophilic granulomatosis with polyangiitis. Model 1 included the ANCA phenotype, items of the Birmingham Vasculitis Activity Score, and interstitial lung disease; model 2 included serum creatinine (s-Cr) and C-reactive protein (CRP) levels with model 1 components. In seven clusters determined in model 1, the ANCA-negative (n=8) and proteinase 3-ANCA-positive (n=41) groups emerged as two distinct clusters. The other five myeloperoxidase-ANCA-positive clusters were characterized by ear, nose, and throat (ENT) (n=47); cutaneous (n=36); renal (n=256), non-renal (n=33); and both ENT and cutaneous symptoms (n=6). Four clusters in model 2 were characterized by myeloperoxidase-ANCA negativity (n=42), without s-Cr elevation (1.3 mg/dL) with high CRP (>10 mg/dL) (n=71), or s-Cr elevation (>= 1.3 mg/dL) without high CRP (<= 10 mg/dL) (n=157). Overall, renal, and relapse-free survival rates were significantly different across the four clusters in model 2. ENT, cutaneous, and renal symptoms may be useful in characterization of Japanese AAV patients with myeloperoxidase-ANCA. The combination of s-Cr and CRP levels may be predictive of prognosis

    Treatment-related damage in elderly-onset ANCA-associated vasculitis: safety outcome analysis of two nationwide prospective cohort studies

    Get PDF
    Background It is not elucidated that there is treatment-related damage in elderly patients with antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis (AAV). Methods Elderly (≥ 75 years of age) patients were enrolled from two nationwide prospective inception cohort studies. The primary outcome was 12-month treatment-related Vasculitis Damage Index (VDI) score. Secondary outcomes included serious infections within 6 months, total VDI score, remission, and relapse. Patient characteristics and outcomes were compared across three different initial glucocorticoid (GC) dose groups: high-dose, prednisolone (PSL) ≥ 0.8 mg/kg/day; medium-dose, 0.6 ≤ PSL  Results Of the 179 eligible patients, the mean age was 80.0 years; 111 (62%) were female. The mean Birmingham Vasculitis Activity Score was 16.1. Myeloperoxidase-ANCA findings were positive in 168 (94%) patients, while proteinase 3-ANCA findings were positive in 11 (6%). The low-dose group was older and had higher serum creatinine levels than the other groups. There were no statistically significant intergroup differences in remission or relapse, whereas serious infection developed more frequently in the high-dose (29 patients [43%]) than the low-dose (13 patients [22%]) or medium-dose (10 patients [19%]) groups (p = 0.0007). Frequent VDI items at 12 months included hypertension (19%), diabetes (13%), atrophy and weakness (13%), osteoporosis (8%), and cataracts (8%). Logistic regression analysis revealed that GC dose at 12 months (odds ratio, 1.14; 95% confidence interval, 1.00–1.35) was a predictor for diabetes. Conclusion A reduced initial GC dose with rapid reduction might be required to ensure the safe treatment of elderly AAV patients

    Plasma brain natriuretic peptide as a surrogate marker for cardioembolic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardioembolic stroke generally results in more severe disability, since it typically has a larger ischemic area than the other types of ischemic stroke. However, it is difficult to differentiate cardioembolic stroke from non-cardioembolic stroke (atherothrombotic stroke and lacunar stroke). In this study, we evaluated the levels of plasma brain natriuretic peptide in acute ischemic stroke patients with cardioembolic stroke or non-cardioembolic stroke, and assessed the prediction factors of plasma brain natriuretic peptide and whether we could differentiate between stroke subtypes on the basis of plasma brain natriuretic peptide concentrations in addition to patient's clinical variables.</p> <p>Methods</p> <p>Our patient cohort consisted of 131 consecutive patients with acute cerebral infarction who were admitted to Kagawa University School of Medicine Hospital from January 1, 2005 to December 31, 2007. The mean age of patients (43 females, 88 males) was 69.6 ± 10.1 years. Sixty-two patients had cardioembolic stroke; the remaining 69 patients had non-cardioembolic stroke (including atherothrombotic stroke, lacunar stroke, or the other). Clinical variables and the plasma brain natriuretic peptide were evaluated in all patients.</p> <p>Results</p> <p>Plasma brain natriuretic peptide was linearly associated with atrial fibrillation, heart failure, chronic renal failure, and left atrial diameter, independently (F<sub>4,126 </sub>= 27.6, p < 0.0001; adjusted R<sup>2 </sup>= 0.45). Furthermore, atrial fibrillation, mitral regurgitation, plasma brain natriuretic peptide (> 77 pg/ml), and left atrial diameter (> 36 mm) were statistically significant independent predictors of cardioembolic stroke in the multivariable setting (Χ<sup>2 </sup>= 127.5, p < 0.001).</p> <p>Conclusion</p> <p>It was suggested that cardioembolic stroke was strongly predicted with atrial fibrillation and plasma brain natriuretic peptide. Plasma brain natriuretic peptide can be a surrogate marker for cardioembolic stroke.</p

    Prediction of response to remission induction therapy by gene expression profiling of peripheral blood in Japanese patients with microscopic polyangiitis

    Get PDF
    BackgroundMicroscopic polyangiitis (MPA), which is classified as an anti-neutrophil cytoplasmic antibody (ANCA)-associated small vessel vasculitis, is one of the most frequent primary vasculitides in Japan. We earlier nominated 16 genes (IRF7, IFIT1, IFIT5, OASL, CLC, GBP-1, PSMB9, HERC5, CCR1, CD36, MS4A4A, BIRC4BP, PLSCR1, DEFA1/DEFA3, DEFA4, and COL9A2) as predictors of response to remission induction therapy against MPA. The aim of this study is to determine the accuracy of prediction using these 16 predictors.MethodsThirty-nine MPA patients were selected randomly and retrospectively from the Japanese nationwide RemIT-JAV-RPGN cohort and enrolled in this study. Remission induction therapy was conducted according to the Guidelines of Treatment for ANCA-Associated Vasculitis published by the Ministry of Health, Labour, and Welfare of Japan. Response to remission induction therapy was predicted by profiling the altered expressions of the 16 predictors between the period before and 1 week after the beginning of treatment. Remission is defined as the absence of clinical manifestations of active vasculitis (Birmingham Vasculitis Activity Score 2003: 0 or 1 point). Persistent remission for 18 months is regarded as a “good response,” whereas no remission or relapse after remission is regarded as a “poor response.”Results“Poor” and “good” responses were predicted in 7 and 32 patients, respectively. Five out of 7 patients with “poor” prediction and 1 out of 32 patients with “good” prediction experienced relapse after remission. One out of 7 patients with “poor” prediction was not conducted to remission. Accordingly, the sensitivity and specificity to predict poor response was 85.7% (6/7) and 96.9% (31/32), respectively.ConclusionsResponse to remission induction therapy can be predicted by monitoring the altered expressions of the 16 predictors in the peripheral blood at an early point of treatment in MPA patients

    Comparison of severity classification in Japanese patients with antineutrophil cytoplasmic antibody-associated vasculitis in a nationwide, prospective, inception cohort study

    Get PDF
    OBJECTIVE: To compare disease severity classification systems for six-month outcome prediction in patients with antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV). METHODS: Patients with newly diagnosed AAV from 53 tertiary institutions were enrolled. Six-month remission, overall survival, and end-stage renal disease (ESRD)-free survival were evaluated. RESULTS: According to the European Vasculitis Study Group (EUVAS)-defined disease severity, the 321 enrolled patients were classified as follows: 14, localized; 71, early systemic; 170, generalized; and 66, severe disease. According to the rapidly progressive glomerulonephritis (RPGN) clinical grading system, the patients were divided as follows: 60, grade I; 178, grade II; 66, grade III; and 12, grade IV. According to the Five-Factor Score (FFS) 2009, 103, 109, and 109 patients had ≤1, 2, and ≥3 points, respectively. No significant difference in remission rates was found in any severity classification. The overall and ESRD-free survival rates significantly differed between grades I/II, III, and IV, regardless of renal involvement. Severe disease was a good predictor of six-month overall and ESRD-free survival. The FFS 2009 was useful to predict six-month ESRD-free survival but not overall survival. CONCLUSIONS: The RPGN grading system was more useful to predict six-month overall and ESRD-free survival than the EUVAS-defined severity or FFS 2009

    III.膠原病合併肺高血圧症診療の特殊性

    No full text
    corecore