5,706 research outputs found
Impact of enteral protein supplementation in premature infants
David M Barrus1, Joann Romano-Keeler2, Christopher Carr3, Kira Segebarth4, Betty Claxton2, William F Walsh2, Paul J Flakoll51Department of Neonatology, Saint Francis Hospital–Bartlett, Memphis, TN, 2Department of Pediatrics, Vanderbilt Medical Center, Nashville, TN, 3Department of Surgery, Naval Hospital Bremerton, Bremerton, WA, 4Pediatric and Diabetes Specialists, Carolinas Medical Center, Charlotte, NC, 5Department of Surgery, Vanderbilt Medical Center, Nashville, TN, USAObjective: The quantity of enteral protein supplementation required by premature infants to optimize growth has not been determined. This study compares the growth of premature infants fed the current standard intake of protein (3.5 g/kg/day) with the growth of those fed a higher amount (4.0 g/kg/day).Study design: Fifty-two infants <1500 g and <33 weeks gestational age participated in a blinded, single-center, prospective randomized control trial to compare growth between two groups of different protein-intake levels. Primary outcomes were average daily weight gain (g/kg/day), head-circumference (cm/kg/week) and linear growth velocity (cm/kg/week). Secondary outcomes were serum indices of protein tolerance and plasma amino acid concentrations.Results: Infants receiving higher amounts of protein had higher rates of growth for body weight (18.2 ± 0.7 versus 16.2 ± 1.0 g/kg/day; P < 0.05) and head circumference (0.87 ± 0.08 versus 0.62 ± 0.07 cm/kg/week; P < 0.05), with no differences in blood protein or plasma amino acid concentrations. Length of hospital stay was 14 days shorter for the higher-protein group (51.4 ± 4.0 versus 65.9 ± 6.3 days).Conclusion: Increasing premature infant enteral protein supplementation from a calculated intake of 3.5–4.0 g/kg/day improved growth in a safe manner.Keywords: human milk, human milk fortifier, growth, low birth weigh
A Unifying Theory of Biological Function
A new theory that naturalizes biological function is explained and compared with earlier etiological and causal role theories. Etiological theories explain functions from how they are caused over their evolutionary history. Causal role theories analyze how functional mechanisms serve the current capacities of their containing system. The new proposal unifies the key notions of both kinds of theories, but goes beyond them by explaining how functions in an organism can exist as factors with autonomous causal efficacy. The goal-directedness and normativity of functions exist in this strict sense as well. The theory depends on an internal physiological or neural process that mimics an organism’s fitness, and modulates the organism’s variability accordingly. The structure of the internal process can be subdivided into subprocesses that monitor specific functions in an organism. The theory matches well with each intuition on a previously published list of intuited ideas about biological functions, including intuitions that have posed difficulties for other theories
Relationship between fibroblastic foci profusion and high resolution CT morphology in fibrotic lung disease
Background Fibroblastic foci profusion on histopathology and severity of traction bronchiectasis on highresolution computed tomography (HRCT) have been shown to be predictors of mortality in patients with idiopathic pulmonary fibrosis (IPF). The aim of this study was to investigate the relationship between fibroblastic foci (FF) profusion and HRCT patterns in patients with a histopathologic diagnosis of usual interstitial pneumonia (UIP), fibrotic non-specific interstitial pneumonia (NSIP) and chronic hypersensitivity pneumonitis (CHP). Methods The HRCT scans of 162 patients with a histopathologic diagnosis of UIP or fibrotic NSIP (n = 162) were scored on extent of groundglass opacification, reticulation, honeycombing, emphysema and severity of traction bronchiectasis. For each patient, a fibroblastic foci profusion score based on histopathologic appearances was assigned. Relationships between extent of fibroblastic foci and individual HRCT patterns were investigated using univariate correlation analysis and multivariate linear regression. Results Increasing extent of reticulation (P < 0.0001) and increasing severity of traction bronchiectasis (P < 0.0001) were independently associated with increasing FF score within the entire cohort. Within individual multidisciplinary team diagnosis subgroups, the only significant independent association with FF score was severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF)/UIP (n = 66, r2 = 0.19, P < 0.0001) and patients with chronic hypersensitivity pneumonitis (CHP) (n = 49, r2 = 0.45, P < 0.0001). Furthermore, FF score had the strongest association with severity of traction bronchiectasis in patients with IPF (r2 = 0.34, P < 0.0001) and CHP (r2 = 0.35, P < 0.0001). There was no correlation between FF score and severity of traction bronchiectasis in patients with fibrotic NSIP. Global disease extent had the strongest association with severity of traction bronchiectasis in patients with fibrotic NSIP (r2 = 0.58, P < 0.0001). Conclusion In patients with fibrotic lung disease, profusion of fibroblastic foci is strikingly related to the severity of traction bronchiectasis, particularly in IPF and CHP. This may explain the growing evidence that traction bronchiectasis is a predictor of mortality in several fibrotic lung diseases
Prion protein and Aβ-related synaptic toxicity impairment
Alzheimer's disease (AD), the most common neurodegenerative disorder, goes along with extracellular amyloid-β (Aβ) deposits. The cognitive decline observed during AD progression correlates with damaged spines, dendrites and synapses in hippocampus and cortex. Numerous studies have shown that Aβ oligomers, both synthetic and derived from cultures and AD brains, potently impair synaptic structure and functions. The cellular prion protein (PrPC) was proposed to mediate this effect. We report that ablation or overexpression of PrPC had no effect on the impairment of hippocampal synaptic plasticity in a transgenic model of AD. These findings challenge the role of PrPC as a mediator of Aβ toxicity
NT1-Tau Is Increased in CSF and Plasma of CJD Patients, and Correlates with Disease Progression
This study investigates the diagnostic and prognostic potential of different forms of tau in biofluids from patients with Creutzfeldt-Jakob disease (CJD). Extracellular tau, which is molecularly heterogeneous, was measured using ultra-sensitive custom-made Simoa assays for N-terminal (NT1), mid-region, and full-length tau. We assessed cross-sectional CSF and plasma from healthy controls, patients with Alzheimer’s disease (AD) and CJD patients. Then, we evaluated the correlation of the best-performing tau assay (NT1-tau) with clinical severity and functional decline (using the MRC Prion Disease Rating Scale) in a longitudinal CJD cohort (n = 145). In a cross-sectional study, tau measured in CSF with the NT1 and mid-region Simoa assays, separated CJD (n = 15) from AD (n = 18) and controls (n = 21) with a diagnostic accuracy (AUCs: 0.98–1.00) comparable to or better than neurofilament light chain (NfL; AUCs: 0.96–0.99). In plasma, NT1-measured tau was elevated in CJD (n = 5) versus AD (n = 15) and controls (n = 15). Moreover, in CJD plasma (n = 145) NT1-tau levels correlated with stage and rate of disease progression, and the effect on clinical progression was modified by the PRNP codon 129. Our findings suggest that plasma NT1-tau shows promise as a minimally invasive diagnostic and prognostic biomarker of CJD, and should be further investigated for its potential to monitor disease progression and response to therapies
The cometary composition of a protoplanetary disk as revealed by complex cyanides
Observations of comets and asteroids show that the Solar Nebula that spawned
our planetary system was rich in water and organic molecules. Bombardment
brought these organics to the young Earth's surface, seeding its early
chemistry. Unlike asteroids, comets preserve a nearly pristine record of the
Solar Nebula composition. The presence of cyanides in comets, including 0.01%
of methyl cyanide (CH3CN) with respect to water, is of special interest because
of the importance of C-N bonds for abiotic amino acid synthesis. Comet-like
compositions of simple and complex volatiles are found in protostars, and can
be readily explained by a combination of gas-phase chemistry to form e.g. HCN
and an active ice-phase chemistry on grain surfaces that advances
complexity[3]. Simple volatiles, including water and HCN, have been detected
previously in Solar Nebula analogues - protoplanetary disks around young stars
- indicating that they survive disk formation or are reformed in situ. It has
been hitherto unclear whether the same holds for more complex organic molecules
outside of the Solar Nebula, since recent observations show a dramatic change
in the chemistry at the boundary between nascent envelopes and young disks due
to accretion shocks[8]. Here we report the detection of CH3CN (and HCN and
HC3N) in the protoplanetary disk around the young star MWC 480. We find
abundance ratios of these N-bearing organics in the gas-phase similar to
comets, which suggests an even higher relative abundance of complex cyanides in
the disk ice. This implies that complex organics accompany simpler volatiles in
protoplanetary disks, and that the rich organic chemistry of the Solar Nebula
was not unique.Comment: Definitive version of the manuscript is published in Nature, 520,
7546, 198, 2015. This is the author's versio
Are there biological differences between screen-detected and interval colorectal cancers in the English Bowel Cancer Screening Programme?
Background: We measured biomarkers of tumour growth and vascularity in interval and screen-detected colorectal cancers (CRCs) in the English Bowel Cancer Screening Programme in order to determine whether rapid tumour growth might contribute to interval CRC (a CRC diagnosed between a negative guaiac stool test and the next scheduled screening episode). Methods: Formalin-fixed, paraffin-embedded sections from 71 CRCs (screen-detected 43, interval 28) underwent immunohistochemistry for CD31 and Ki-67, in order to measure the microvessel density (MVD) and proliferation index (PI), respectively, as well as microsatellite instability (MSI) testing. Results: Interval CRCs were larger (P=0.02) and were more likely to exhibit venous invasion (P=0.005) than screen-detected tumours. There was no significant difference in MVD or PI between interval and screen-detected CRCs. More interval CRCs displayed MSI-high (14%) compared with screen-detected tumours (5%). A significantly (P=0.005) higher proportion (51%) of screen-detected CRC resection specimens contained at least one polyp compared with interval CRC (18%) resections. Conclusions: We found no evidence of biological differences between interval and screen-detected CRCs, consistent with the low sensitivity of guaiac stool testing as the main driver of interval CRC. The contribution of synchronous adenomas to occult blood loss for screening requires further investigation
Testosterone replacement in young male cancer survivors: A 6-month double-blind randomised placebo-controlled trial
Background
Young male cancer survivors have lower testosterone levels, higher fat mass, and worse quality of life (QoL) than age-matched healthy controls. Low testosterone in cancer survivors can be due to orchidectomy or effects of chemotherapy and radiotherapy. We have undertaken a double-blind, placebo-controlled, 6-month trial of testosterone replacement in young male cancer survivors with borderline low testosterone (7–12 nmol/l).
Methods and findings
This was a multicentre United Kingdom study conducted in secondary care hospital outpatients. Male survivors of testicular cancer, lymphoma, and leukaemia aged 25–50 years with morning total serum testosterone 7–12 nmol/l were recruited. A total of 136 men were randomised between July 2012 and February 2015 (42.6% aged 25–37 years, 57.4% 38–50 years, 88% testicular cancer, 10% lymphoma, matched for body mass index [BMI]). Participants were randomised 1:1 to receive testosterone (Tostran 2% gel) or placebo for 26 weeks. A dose titration was performed after 2 weeks. The coprimary end points were trunk fat mass and SF36 Physical Functioning score (SF36-PF) at 26 weeks by intention to treat. At 26 weeks, testosterone treatment compared with placebo was associated with decreased trunk fat mass (−0.9 kg, 95% CI −1.6 to −0.3, p = 0.0073), decreased whole-body fat mass (−1.8 kg, 95% CI −2.9 to −0.7, p = 0.0016), and increased lean body mass (1.5 kg, 95% CI 0.9–2.1, p < 0.001). Decrease in fat mass was greatest in those with a high truncal fat mass at baseline. There was no treatment effect on SF36-PF or any other QoL scores. Testosterone treatment was well tolerated. The limitations of our study were as follows: a relatively short duration of treatment, only three cancer groups included, and no hard end point data such as cardiovascular events.
Conclusions
In young male cancer survivors with low-normal morning total serum testosterone, replacement with testosterone is associated with an improvement in body composition.
Trial registration
ISRCTN: 70274195, EudraCT: 2011-000677-31
Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice
Although soluble oligomeric and protofibrillar assemblies of Aβ-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Aβ-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds ‘forward' in a near-irreversible manner from the monomeric Aβ peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Aβ amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Aβ but rather toward soluble amyloid protofibrils. We characterized these ‘backward' Aβ protofibrils generated from mature Aβ fibers and compared them with previously identified ‘forward' Aβ protofibrils obtained from the aggregation of fresh Aβ monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Aβ-aggregates that could readily be activated by exposure to biological lipids
- …