3,472 research outputs found
Recommended from our members
Design of domestic photovoltaics manufacturing systems under global constraints and uncertainty
As global political discourse is taking place where the need for a cleaner energy mix is constantly highlighted, manufacturing strategies are becoming more relevant. Thus, the photovoltaics system design is a crucial aspect related with the overall sustainability. In fact, various countries are considering the potential to locally manufacture different elements of the photovoltaics (PV) value chain and the strategies to incentivize a local manufacturing base. This paper develops a mathematical programming approach for the optimal design of a PV manufacturing value chain considering diverse criteria linked to economic and environmental performance such as minimum sustainable price, transportation capacity, among others, and considering uncertainty. In addition, the proposed methodology involves the dependence over time of supply chain variables and economic parameters such as inflation, electricity cost, and weighted average cost of capital, to determine the manufacturing system topology under uncertain conditions. Our results highlight the importance of planning models to develop markets policies related to supply chains, production level changes and imposed tariffs all while involving uncertainty in economic parameters, which is an improvement compared to planning models that use deterministic formulations. Finally, the proposed methodology and results can encourage decision-making considering probable variations in different parameters
PPM demodulation: On approaching fundamental limits of optical communications
We consider the problem of demodulating M-ary optical PPM (pulse-position
modulation) waveforms, and propose a structured receiver whose mean probability
of symbol error is smaller than all known receivers, and approaches the quantum
limit. The receiver uses photodetection coupled with optimized phase-coherent
optical feedback control and a phase-sensitive parametric amplifier. We present
a general framework of optical receivers known as the conditional pulse nulling
receiver, and present new results on ultimate limits and achievable regions of
spectral versus photon efficiency tradeoffs for the single-spatial-mode
pure-loss optical communication channel.Comment: 5 pages, 6 figures, IEEE ISIT, Austin, TX (2010
The dynamics of apparent horizons in Robinson-Trautman spacetimes
We present an alternative scheme of finding apparent horizons based on
spectral methods applied to Robinson-Trautman spacetimes. We have considered
distinct initial data such as representing the spheroids of matter and the
head-on collision of two non-rotating black holes. The evolution of the
apparent horizon is presented. We have obtained in some cases a mass gap
between the final Bondi and apparent horizon masses, whose implications were
briefly commented in the light of the thermodynamics of black holes.Comment: 9 pages, 7 figure
A First- and Second-Order Motion Energy Analysis of Peripheral Motion Illusions Leads to Further Evidence of “Feature Blur” in Peripheral Vision
Anatomical and physiological differences between the central and peripheral visual systems are well documented. Recent findings have suggested that vision in the periphery is not just a scaled version of foveal vision, but rather is relatively poor at representing spatial and temporal phase and other visual features. Shapiro, Lu, Huang, Knight, and Ennis (2010) have recently examined a motion stimulus (the “curveball illusion”) in which the shift from foveal to peripheral viewing results in a dramatic spatial/temporal discontinuity. Here, we apply a similar analysis to a range of other spatial/temporal configurations that create perceptual conflict between foveal and peripheral vision.To elucidate how the differences between foveal and peripheral vision affect super-threshold vision, we created a series of complex visual displays that contain opposing sources of motion information. The displays (referred to as the peripheral escalator illusion, peripheral acceleration and deceleration illusions, rotating reversals illusion, and disappearing squares illusion) create dramatically different perceptions when viewed foveally versus peripherally. We compute the first-order and second-order directional motion energy available in the displays using a three-dimensional Fourier analysis in the (x, y, t) space. The peripheral escalator, acceleration and deceleration illusions and rotating reversals illusion all show a similar trend: in the fovea, the first-order motion energy and second-order motion energy can be perceptually separated from each other; in the periphery, the perception seems to correspond to a combination of the multiple sources of motion information. The disappearing squares illusion shows that the ability to assemble the features of Kanisza squares becomes slower in the periphery.The results lead us to hypothesize “feature blur” in the periphery (i.e., the peripheral visual system combines features that the foveal visual system can separate). Feature blur is of general importance because humans are frequently bringing the information in the periphery to the fovea and vice versa
Ecological succession of a Jurassic shallow-water ichthyosaur fall.
After the discovery of whale fall communities in modern oceans, it has been hypothesized that during the Mesozoic the carcasses of marine reptiles created similar habitats supporting long-lived and specialized animal communities. Here, we report a fully documented ichthyosaur fall community, from a Late Jurassic shelf setting, and reconstruct the ecological succession of its micro- and macrofauna. The early 'mobile-scavenger' and 'enrichment-opportunist' stages were not succeeded by a 'sulphophilic stage' characterized by chemosynthetic molluscs, but instead the bones were colonized by microbial mats that attracted echinoids and other mat-grazing invertebrates. Abundant cemented suspension feeders indicate a well-developed 'reef stage' with prolonged exposure and colonization of the bones prior to final burial, unlike in modern whale falls where organisms such as the ubiquitous bone-eating worm Osedax rapidly destroy the skeleton. Shallow-water ichthyosaur falls thus fulfilled similar ecological roles to shallow whale falls, and did not support specialized chemosynthetic communities
Inhibition of Y1 receptor signaling improves islet transplant outcome
Failure to secrete sufficient quantities of insulin is a pathological feature of type-1 and type-2 diabetes, and also reduces the success of islet cell transplantation. Here we demonstrate that Y1 receptor signaling inhibits insulin release in β-cells, and show that this can be pharmacologically exploited to boost insulin secretion. Transplanting islets with Y1 receptor deficiency accelerates the normalization of hyperglycemia in chemically induced diabetic recipient mice, which can also be achieved by short-term pharmacological blockade of Y1 receptors in transplanted mouse and human islets. Furthermore, treatment of non-obese diabetic mice with a Y1 receptor antagonist delays the onset of diabetes. Mechanistically, Y1 receptor signaling inhibits the production of cAMP in islets, which via CREB mediated pathways results in the down-regulation of several key enzymes in glycolysis and ATP production. Thus, manipulating Y1 receptor signaling in β-cells offers a unique therapeutic opportunity for correcting insulin deficiency as it occurs in the pathological state of type-1 diabetes as well as during islet transplantation.Islet transplantation is considered one of the potential treatments for T1DM but limited islet survival and their impaired function pose limitations to this approach. Here Loh et al. show that the Y1 receptor is expressed in β- cells and inhibition of its signalling, both genetic and pharmacological, improves mouse and human islet function.info:eu-repo/semantics/publishe
Assessment of a self-reported Drinks Diary for the estimation of drinks intake by care home residents: Fluid Intake Study in the Elderly (FISE)
Objectives: We evaluated the accuracy of a newly developed self-completed Drinks Diary in care home residents and compared it with direct observation and fluid intake charts. Design: Observational study. Setting: Residential care homes in Norfolk, UK. Participants: 22 elderly people (18 women, mean age 86.6 years SD 8.6, 12 with MMSE scores <27). Measurements: Participants recorded their own drinks intake over 24 hours using the Drinks Diary while care staff used the homes’ usual fluid intake chart to record drinks intake. These records were compared with drinks intake assessed by researcher direct observation (reference method), during waking hours (6am to 10pm), while drinks taken from 10pm to 6am were self-reported and checked with staff. Results: Drinks intake assessed by the Drinks Diary was highly correlated with researcher direct observation (Pearson correlation coefficient r=0.93, p<0.001, mean difference -163ml/day) while few staff-completed fluid charts were returned and correlation was low (r=0.122, p=0.818, mean difference 702ml/day). The Drinks Diary classified 19 of 22 participants correctly as drinking enough or not using both the European Food Safety Authority and US recommendations. Conclusion: The Drinks Diary estimate of drinks intake was comparable with direct observation and more accurate (and reliably completed) than staff records. The Drinks Diary can provide a reliable estimate of drinks intake in elderly care home residents physically and cognitively able to complete it. It may be useful for researchers, care staff and practitioners needing to monitor drinks intake of elderly people, to help them avoid dehydration
A Dynamic Model of Interactions of Ca^(2+), Calmodulin, and Catalytic Subunits of Ca^(2+)/Calmodulin-Dependent Protein Kinase II
During the acquisition of memories, influx of Ca^(2+) into the postsynaptic spine through the pores of activated N-methyl-D-aspartate-type glutamate receptors triggers processes that change the strength of excitatory synapses. The pattern of Ca^(2+) influx during the first few seconds of activity is interpreted within the Ca^(2+)-dependent signaling network such that synaptic strength is eventually either potentiated or depressed. Many of the critical signaling enzymes that control synaptic plasticity, including Ca^(2+)/calmodulin-dependent protein kinase II (CaMKII), are regulated by calmodulin, a small protein that can bind up to 4 Ca^(2+) ions. As a first step toward clarifying how the Ca^(2+)-signaling network decides between potentiation or depression, we have created a kinetic model of the interactions of Ca^(2+), calmodulin, and CaMKII that represents our best understanding of the dynamics of these interactions under conditions that resemble those in a postsynaptic spine. We constrained parameters of the model from data in the literature, or from our own measurements, and then predicted time courses of activation and autophosphorylation of CaMKII under a variety of conditions. Simulations showed that species of calmodulin with fewer than four bound Ca^(2+) play a significant role in activation of CaMKII in the physiological regime, supporting the notion that processing ofCa^(2+) signals in a spine involves competition among target enzymes for binding to unsaturated species of CaM in an environment in which the concentration of Ca^(2+) is fluctuating rapidly. Indeed, we showed that dependence of activation on the frequency of Ca^(2+) transients arises from the kinetics of interaction of fluctuating Ca^(2+) with calmodulin/CaMKII complexes. We used parameter sensitivity analysis to identify which parameters will be most beneficial to measure more carefully to improve the accuracy of predictions. This model provides a quantitative base from which to build more complex dynamic models of postsynaptic signal transduction during learning
Extracts of Feijoa Inhibit Toll-Like Receptor 2 Signaling and Activate Autophagy Implicating a Role in Dietary Control of IBD
Inflammatory bowel disease (IBD) is a heterogeneous chronic inflammatory disease affecting the gut with limited treatment success for its sufferers. This suggests the need for better understanding of the different subtypes of the disease as well as nutritional interventions to compliment current treatments. In this study we assess the ability of a hydrophilic feijoa fraction (F3) to modulate autophagy a process known to regulate inflammation, via TLR2 using IBD cell lines
In vivo hypothalamic regional volumetry across the frontotemporal dementia spectrum
Appendix A. Supplementary data:
The following are the Supplementary data to this article: Supplementary data 1. Available at: https://ars.els-cdn.com/content/image/1-s2.0-S2213158222001498-mmc1.docx (Word document (15MB)).Copyright © 2022 The Author(s). Background:
Frontotemporal dementia (FTD) is a spectrum of diseases characterised by language, behavioural and motor symptoms. Among the different subcortical regions implicated in the FTD symptomatology, the hypothalamus regulates various bodily functions, including eating behaviours which are commonly present across the FTD spectrum. The pattern of specific hypothalamic involvement across the clinical, pathological, and genetic forms of FTD has yet to be fully investigated, and its possible associations with abnormal eating behaviours have yet to be fully explored.
Methods:
Using an automated segmentation tool for volumetric T1-weighted MR images, we measured hypothalamic regional volumes in a cohort of 439 patients with FTD (197 behavioural variant FTD [bvFTD]; 7 FTD with associated motor neurone disease [FTD-MND]; 99 semantic variant primary progressive aphasia [svPPA]; 117 non-fluent variant PPA [nfvPPA]; 19 PPA not otherwise specified [PPA-NOS]) and 118 age-matched controls. We compared volumes across the clinical, genetic (29 MAPT, 32 C9orf72, 23 GRN), and pathological diagnoses (61 tauopathy, 40 TDP-43opathy, 4 FUSopathy). We correlated the volumes with presence of abnormal eating behaviours assessed with the revised version of the Cambridge Behavioural Inventory (CBI-R).
Results:
On average, FTD patients showed 14% smaller hypothalamic volumes than controls. The groups with the smallest hypothalamic regions were FTD-MND (20%), MAPT (25%) and FUS (33%), with differences mainly localised in the anterior and posterior regions. The inferior tuberal region was only significantly smaller in tauopathies (MAPT and Pick’s disease) and in TDP-43 type C compared to controls and was the only regions that did not correlate with eating symptoms. PPA-NOS and nfvPPA were the groups with the least frequent eating behaviours and the least hypothalamic involvement.
Conclusions:
Abnormal hypothalamic volumes are present in all the FTD forms, but different hypothalamic regions might play a different role in the development of abnormal eating behavioural and metabolic symptoms. These findings might therefore help in the identification of different underlying pathological mechanisms, suggesting the potential use of hypothalamic imaging biomarkers and the research of potential therapeutic targets within the hypothalamic neuropeptides.The Dementia Research Centre is supported by Alzheimer's Research UK, Alzheimer's Society, Brain Research UK, and The Wolfson Foundation. This work was supported by the NIHR UCL/H Biomedical Research Centre, the Leonard Wolfson Experimental Neurology Centre (LWENC) Clinical Research Facility, and the UK Dementia Research Institute, which receives its funding from UK DRI Ltd, funded by the UK Medical Research Council, Alzheimer's Society and Alzheimer's Research UK. JDR is supported by the Miriam Marks Brain Research UK Senior Fellowship and has received funding from an MRC Clinician Scientist Fellowship (MR/M008525/1) and the NIHR Rare Disease Translational Research Collaboration (BRC149/NS/MH). This work was also supported by the MRC UK GENFI grant (MR/M023664/1), the Bluefield Project and the JPND GENFI-PROX grant (2019-02248). MB is supported by a Fellowship award from the Alzheimer’s Society, UK (AS-JF-19a-004-517). MB’s work was also supported by the UK Dementia Research Institute which receives its funding from DRI Ltd, funded by the UK Medical Research Council, Alzheimer’s Society and Alzheimer’s Research UK. MB acknowledges the support of NVIDIA Corporation with the donation of the Titan V GPU used for part of the analyses in this research. JEI is supported by the European Research Council (Starting Grant 677697, project BUNGEE-TOOLS), Alzheimer’s Research UK (ARUK-IRG2019A003) and the NIH (1RF1MH123195-01 and 1R01AG070988). JDW receives grant support from the Alzheimer's Society, Alzheimer's Research UK, the NIHR UCL/UCLH Biomedical Research Centre and a Frontotemporal Dementia Research Studentship in Memory of David Blechner (funded through The National Brain Appeal)
- …