93 research outputs found

    Delayed union of femoral fractures in older rats:decreased gene expression

    Get PDF
    BACKGROUND: Fracture healing slows with age. While 6-week-old rats regain normal bone biomechanics at 4 weeks after fracture, one-year-old rats require more than 26 weeks. The possible role of altered mRNA gene expression in this delayed union was studied. Closed mid-shaft femoral fractures were induced followed by euthanasia at 0 time (unfractured) or at 1, 2, 4 or 6 weeks after fracture in 6-week-old and 12-15-month-old Sprague-Dawley female rats. mRNA levels were measured for osteocalcin, type I collagen Ξ±1, type II collagen, bone morphogenetic protein (BMP)-2, BMP-4 and the type IA BMP receptor. RESULTS: For all of the genes studied, the mRNA levels increased in both age groups to a peak at one to two weeks after fracture. All gene expression levels decreased to very low or undetectable levels at four and six weeks after fracture for both age groups. At four weeks after fracture, the younger rats were healed radiographically, but not the older rats. CONCLUSIONS: (1) All genes studied were up-regulated by fracture in both age groups. Thus, the failure of the older rats to heal promptly was not due to the lack of expression of any of the studied genes. (2) The return of the mRNA gene expression to baseline values in the older rats prior to healing may contribute to their delayed union. (3) No genes were overly up-regulated in the older rats. The slower healing response of the older rats did not stimulate a negative-feedback increase in the mRNA expression of stimulatory cytokines

    Multisensory information facilitates reaction speed by enlarging activity difference between superior colliculus hemispheres in rats

    Get PDF
    Animals can make faster behavioral responses to multisensory stimuli than to unisensory stimuli. The superior colliculus (SC), which receives multiple inputs from different sensory modalities, is considered to be involved in the initiation of motor responses. However, the mechanism by which multisensory information facilitates motor responses is not yet understood. Here, we demonstrate that multisensory information modulates competition among SC neurons to elicit faster responses. We conducted multiunit recordings from the SC of rats performing a two-alternative spatial discrimination task using auditory and/or visual stimuli. We found that a large population of SC neurons showed direction-selective activity before the onset of movement in response to the stimuli irrespective of stimulation modality. Trial-by-trial correlation analysis showed that the premovement activity of many SC neurons increased with faster reaction speed for the contraversive movement, whereas the premovement activity of another population of neurons decreased with faster reaction speed for the ipsiversive movement. When visual and auditory stimuli were presented simultaneously, the premovement activity of a population of neurons for the contraversive movement was enhanced, whereas the premovement activity of another population of neurons for the ipsiversive movement was depressed. Unilateral inactivation of SC using muscimol prolonged reaction times of contraversive movements, but it shortened those of ipsiversive movements. These findings suggest that the difference in activity between the SC hemispheres regulates the reaction speed of motor responses, and multisensory information enlarges the activity difference resulting in faster responses

    Mycobacterium indicus pranii Supernatant Induces Apoptotic Cell Death in Mouse Peritoneal Macrophages In Vitro

    Get PDF
    Mycobacterium indicus pranii (MIP), also known as Mw, is a saprophytic, non-pathogenic strain of Mycobacterium and is commercially available as a heat-killed vaccine for leprosy and recently tuberculosis (TB) as part of MDT. In this study we provide evidence that cell-free supernatant collected from original MIP suspension induces rapid and enhanced apoptosis in mouse peritoneal macrophages in vitro. It is demonstrated that the MIP cell-free supernatant induced apoptosis is mitochondria-mediated and caspase independent and involves mitochondrial translocation of Bax and subsequent release of AIF and cytochrome c from the mitochondria. Experiments with pharmacological inhibitors suggest a possible role of PKC in mitochondria-mediated apoptosis of macrophages

    Predictors of mortality in HIV-1 infected children on antiretroviral therapy in Kenya: a prospective cohort

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Among children, early mortality following highly active antiretroviral therapy (HAART) remains high. It is important to define correlates of mortality in order to improve outcome.</p> <p>Methods</p> <p>HIV-1-infected children aged 18 months-12 years were followed up at Kenyatta National Hospital, Nairobi after initiating NNRTI-based HAART. Cofactors for mortality were determined using multivariate Cox regression models.</p> <p>Results</p> <p>Between August 2004 and November 2008, 149 children were initiated on HAART of whom 135 were followed for a total of 238 child-years (median 21 months) after HAART initiation. Baseline median CD4% was 6.8% and median HIV-1-RNA was 5.98-log<sub>10 </sub>copies/ml. Twenty children (13.4%) died at a median of 35 days post-HAART initiation. Mortality during the entire follow-up period was 8.4 deaths per 100 child-years (46 deaths/100 child-years in first 4 months and 1.0 deaths/100 child-years after 4 months post-HAART initiation). On univariate Cox regression, baseline hemoglobin (Hb) <9 g/dl, weight-for-height z-score (WHZ) < -2, and WHO clinical stage 4 were associated with increased risk of death (Hb <9 g/dl HR 3.00 [95% C.I. 1.21-7.39], p = 0.02, WHZ < -2 HR 3.41 [95% C.I. 1.28-9.08], p = 0.01, and WHO clinical stage 4, HR 3.08 [1.17-8.12], p = 0.02). On multivariate analysis Hb < 9 g/dl remained predictive of mortality after controlling for age, baseline CD4%, WHO clinical stage and weight-for-height z-score (HR 2.95 (95% C.I. 1.04-8.35) p = 0.04).</p> <p>Conclusion</p> <p>High early mortality was observed in this cohort of Kenyan children receiving HAART, and low baseline hemoglobin was an independent risk factor for death.</p

    Gene Expression Profiling of Soft and Firm Atlantic Salmon Fillet

    Get PDF
    Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes) and mitochondrial proteins (129 genes), proteins involved in stress responses (12 genes), and lipid metabolism (30 genes). Coefficients of determination (R2) were in the range of 0.64–0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R2β€Š=β€Š0.66) and myofiber proteins (42 genes, R2β€Š=β€Š0.54). Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation), immune genes, and intracellular proteases (positive correlation). Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15) though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role

    Adherence to antiretroviral therapy in young children in Cape Town, South Africa, measured by medication return and caregiver self-report: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antiretroviral therapy (ART) dramatically improves outcomes for children in Africa; however excellent adherence is required for treatment success. This study describes the utility of different measures of adherence in detecting lapses in infants and young children in Cape Town, South Africa.</p> <p>Methods</p> <p>In a prospective cohort of 122 HIV-infected children commenced on ART, adherence was measured monthly during the first year of treatment by medication return (MR) for both syrups and tablets/capsules. A questionnaire was administered to caregivers after 3 months of treatment to assess experience with giving medication and self-reported adherence. Viral and immune response to treatment were assessed at the end of one year and associations with measured adherence determined.</p> <p>Results</p> <p>Medication was returned for 115/122 (94%) children with median age (IQR) of 37 (16 – 61) months. Ninety-one (79%) children achieved annual average MR adherence β‰₯ 90%. This was an important covariate associated with viral suppression after adjustment for disease severity (OR = 5.5 [95%CI: 0.8–35.6], p = 0.075), however was not associated with immunological response to ART. By 3 months on ART, 13 (10%) children had deceased and 11 (10%) were lost to follow-up. Questionnaires were completed by 87/98 (90%) of caregivers of those who remained in care. Sensitivity of poor reported adherence (missing β‰₯ 1 dose in the previous 3 days) for MR adherence <90% was only 31.8% (95% CI: 10.7% – 53.0%). Caregivers of 33/87 (38.4%) children reported difficulties with giving medication, most commonly poor palatability (21.8%). Independent socio-demographic predictors of MR adherence β‰₯ 90% were secondary education of caregivers (OR = 4.49; 95%CI: 1.10 – 18.24) and access to water and electricity (OR = 2.65; 95%CI: 0.93 – 7.55). Taking ritonavir was negatively associated with MR adherence β‰₯ 90% (OR = 0.37; 95%CI: 0.13 – 1.02).</p> <p>Conclusion</p> <p>Excellent adherence to ART is possible in African infants and young children and the relatively simple low technology measure of adherence by MR strongly predicts viral response. Better socio-economic status and more palatable regimens are associated with better adherence.</p

    Concave Pit-Containing Scaffold Surfaces Improve Stem Cell-Derived Osteoblast Performance and Lead to Significant Bone Tissue Formation

    Get PDF
    Scaffold surface features are thought to be important regulators of stem cell performance and endurance in tissue engineering applications, but details about these fundamental aspects of stem cell biology remain largely unclear.In the present study, smooth clinical-grade lactide-coglyolic acid 85:15 (PLGA) scaffolds were carved as membranes and treated with NMP (N-metil-pyrrolidone) to create controlled subtractive pits or microcavities. Scanning electron and confocal microscopy revealed that the NMP-treated membranes contained: (i) large microcavities of 80-120 microm in diameter and 40-100 microm in depth, which we termed primary; and (ii) smaller microcavities of 10-20 microm in diameter and 3-10 microm in depth located within the primary cavities, which we termed secondary. We asked whether a microcavity-rich scaffold had distinct bone-forming capabilities compared to a smooth one. To do so, mesenchymal stem cells derived from human dental pulp were seeded onto the two types of scaffold and monitored over time for cytoarchitectural characteristics, differentiation status and production of important factors, including bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF). We found that the microcavity-rich scaffold enhanced cell adhesion: the cells created intimate contact with secondary microcavities and were polarized. These cytological responses were not seen with the smooth-surface scaffold. Moreover, cells on the microcavity-rich scaffold released larger amounts of BMP-2 and VEGF into the culture medium and expressed higher alkaline phosphatase activity. When this type of scaffold was transplanted into rats, superior bone formation was elicited compared to cells seeded on the smooth scaffold.In conclusion, surface microcavities appear to support a more vigorous osteogenic response of stem cells and should be used in the design of therapeutic substrates to improve bone repair and bioengineering applications in the future

    Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Get PDF
    BACKGROUND: Classical homocystinuria is an autosomal recessive disorder caused by cystathionine Ξ²-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. METHODS: To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. RESULTS: hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca(2+)/PO(4)(3- )and lower Ca(2+)/CO(3)(2- )molar ratios than in controls. Mineral crystallization was unchanged. CONCLUSION: In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse

    Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice

    Get PDF
    MicroRNAs (miRNAs) interact with 3β€² untranslated region (UTR) elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3β€² UTR activity of Bmal1. A number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12∢12 and of these miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 3β€² UTR activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators
    • …
    corecore